OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 18 — Jun. 20, 2007
  • pp: 3878–3890

Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores

Troy A. Alexander and Dianna M. Le  »View Author Affiliations


Applied Optics, Vol. 46, Issue 18, pp. 3878-3890 (2007)
http://dx.doi.org/10.1364/AO.46.003878


View Full Text Article

Enhanced HTML    Acrobat PDF (3561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface-enhanced-Raman-spectroscopy (SERS) can be made an attractive approach for the identification of Raman-active compounds and biological materials (i.e., toxins, viruses, or intact bacterial cells or spores) through development of reproducible, spatially uniform SERS-active substrates. Recently, reproducible (from substrate to substrate), spatially homogeneous (over large areas) SERS-active substrates have been commercialized and are now available in the marketplace. Scanning electron microscopy and high-resolution, tapping-mode atomic force microscopy have been used to analyze these novel plasmonic surfaces for topographical consistency. Additionally, we have assessed, by wavelength-tunable microreflectance spectrometry, the spatial distribution of the localized surface plasmon resonance (LSPR) across a single substrate surface as well as the LSPR λ MAX variance from substrate to substrate. These analyses reveal that these surfaces are topologically uniform with small LSPR variance from substrate to substrate. Further, we have utilized these patterned surfaces to acquire SERS spectral signatures of four intact, genetically distinct Bacillus spore species cultivated under identical growth conditions. Salient spectral signature features make it possible to discriminate among these genetically distinct spores. Additionally, partial least squares, a multivariate calibration method, has been used to develop personal-computer-borne algorithms useful for classification of unknown spore samples based solely on SERS spectral signatures. To our knowledge, this is the first report detailing application of these commercially available SERS-active substrates to identification of intact Bacillus spores.

© 2007 Optical Society of America

OCIS Codes
(170.1580) Medical optics and biotechnology : Chemometrics
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: December 22, 2006
Revised Manuscript: March 5, 2007
Manuscript Accepted: March 7, 2007
Published: May 31, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Troy A. Alexander and Dianna M. Le, "Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores," Appl. Opt. 46, 3878-3890 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-18-3878


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Walt and D. R. Franz, "Biological warfare detection," Anal. Chem. 72, 738A-746A (2000). [PubMed]
  2. M. B. Phillips, "Bioterrorism: a brief history," Northeast Fla. Med. 56, 32-35 (2005).
  3. D. W. Siegrist, "The threat of biological attack: why concern now?" Emerging Infect. Dis. 5, 505-508 (1999). [CrossRef] [PubMed]
  4. "A health warning on bioterrorism," Nature 406, 109 (2000). [PubMed]
  5. J. B. Tucker, "Historical trends related to bioterrorism: an emperical analysis," Emerging Infect. Dis. 5, 498-504 (1999). [CrossRef] [PubMed]
  6. E. M. Eitzen and E. T. Takafuji, in Textbook of Military Medicine: Medical Aspects of Chemical and Biological Warfare, F.R.Sidell, E. T. Takafuji, and D. R. Franz, eds. (Office of The Surgeon General at TMM Publications Borden Institute, 1997), Chap. 18, pp. 415-423.
  7. J. A. Jernigan, D. S. Stephens, D. A. Ashford, C. Omenaca, M. S. Topiel, M. Galbraith, M. Tapper, T. L. Fisk, S. Zaki, T. Popovic, R. F. Meyer, C. P. Quinn, S. A. Harper, S. K. Fridkin, J. J. Sejvar, C. W. Shephard, M. McConnell, J. Guarner, W. J. Sheih, J. M. Malecki, J. L. Berberding, J. M. Hughes, B. A. Perkins, and Members of the Anthrax Bioterrorism Investigation Team, "Bioterrorism-related inhalation anthrax: the first 10 cases reported in the United States," Emerging Infect. Dis. 7, 933-944 (2001). [CrossRef] [PubMed]
  8. J. Papaparaskevas, D. P. Houhoula, M. Papadimitriou, G. Saroglou, N. J. Legakis, and L. Zerva, "Ruling out Bacillus anthracis," Emerging Infect. Dis. 10, 732-735 (1999).
  9. Centers for Disease Control and Prevention, American Society of Microbiology, Association of Public Heath Laboratories, "Basic diagnostic testing for level A laboratories for the presumptive identification of Bacillus anthracis," accessed November 2006, http://www.asm.org/ASM/files/LEFTMARGINHEADERLIST/DOWNLOADFILENAME/0000000521/Bacillusanthracisprotocol[1].pdf.
  10. Centers for Disease Control and Prevention, "Approved tests for the detection of Bacillus anthracis in the Laboratory Response Network (LRN)," accessed November 2006, http://www.bt.cdc.gov/agent/anthrax/lab-testing/approvedlrntests.asp.
  11. T. G. Abshire, J. E. Brown, and J. W. Ezzell, "Production and validation of the use of gamma phage for identification of Bacillus anthracis," J. Clin. Microbiol. 43, 4780-4788 (2005). [CrossRef] [PubMed]
  12. The Royal Society, "Measures for controlling the threat from biological weapons," accessed November 2006, http://www.royalsoc.ac.uk/displaypagedoc.asp?id=11409.
  13. D. T. Dennis, T. V. Inglesby, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, A. D. Fine, A. M. Friedlander, J. Hauer, M. Layton, S. R. Lillibridge, J. E. McDade, M. T. Osterholm, T. O'Toole, G. Parker, T. M. Perl, P. K. Russel, and K. Tonat, "Tularemia as a biological weapon: medical and public heath management," J. Am. Med. Assoc. 285, 2763-2773 (2001). [CrossRef]
  14. T. V. Inglesby, T. O'Toole, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, A. M. Friedlander, J. Gerberding, J. Hauer, J. Hughes, J. E. McDade, M. T. Osterholm, G. Parker, T. M. Perl, P. K. Russell, and K. Tonat, "Anthrax as a biological weapon, 2002: updated recommendations for management," J. Am. Med. Assoc. 287, 2236-2252 (2002). [CrossRef]
  15. P. J. Meehan, N. E. Rosenstein, M. Gillen, R. F. Meyer, M. J. Kiefer, S. Deitchman, R. E. Besser, R. L. Ehrenberg, K. M. Edwards, and K. F. Martinez for the Centers for Disease Control and Prevention, "Responding to detection of aerosolized Bacillus anthracis by autonomous detection systems in the workplace," MMWR Morb. Mortal. Wkly. Rep. 53, 1-11 (2004).
  16. B. K. De, S. L. Bragg, G. N. Sanden, K. E. Wilson, L. A. Diem, C. K. Marston, A. R. Hoffmaster, G. A. Barnett, R. S. Weyeant, T. G. Abshire, J. W. Ezzell, and T. Popovic, "Two-component direct fluorescent-antibody assay for rapid identification of Bacillus anthracis," Emerging Infect. Dis. 8, 1060-1065 (2002). [PubMed]
  17. J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy (Academic, 1994), Chap. 3.
  18. A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev. 27, 241-250 (1998). [CrossRef]
  19. R. M. Jarvis, A. Brooker, and R. Goodacre, "Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface," Anal. Chem. 76, 5198-5202 (2004). [CrossRef] [PubMed]
  20. A. Sengupta, M. L. Laucks, and E. J. Davis, "Surface-enhanced Raman spectroscopy of bacteria and pollen," Appl. Spectrosc. 59, 1016-1023 (2005). [CrossRef] [PubMed]
  21. M. L. Laucks, A. Sengupta, K. Junge, E. J. Davis, and B. D. Swanson, "Comparison of psychro-active arctic marine bacteria and common mesophilic bacteria using surface-enhanced Raman spectroscopy," Appl. Spectrosc. 59, 1222-1228 (2005). [CrossRef] [PubMed]
  22. W. R. Premasiri, D. T. Moir, M. S. Klemper, N. Krieger, G. Jones II , and L. D. Ziegler, "Characterization of the surface enhanced Raman scattering (SERS) of bacteria," J. Phys. Chem. B 109, 312-320 (2005). [CrossRef]
  23. T. A. Alexander, P. M. Pellegrino, and J. B. Gillespie, "Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores," Appl. Spectrosc. 57, 1340-1345 (2003). [CrossRef] [PubMed]
  24. J. K. Daniels, T. P. Caldwell, K. A. Christesen, and G. Chumanov, "Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy," Anal. Chem. 78, 1724-1729 (2006). [CrossRef] [PubMed]
  25. X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, "Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection," J. Am. Chem. Soc. 128, 10304-10309 (2006). [CrossRef] [PubMed]
  26. D. D. Evanoff, Jr., J. Heckel, T. P. Caldwell, K. A. Christesen, and G. Chumanov, "Monitoring DPA release from a single germinating Bacillus subtilis endospore via surface-enhanced Raman scattering microscopy," J. Am. Chem. Soc. 128, 12618-12619 (2006). [CrossRef] [PubMed]
  27. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  28. K. Kneipp, H. Kneipp, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering," Appl. Spectrosc. 52, 175-178 (1998). [CrossRef]
  29. W. E. Doering and S. Nie, "Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement," J. Phys. Chem. B 106, 311-317 (2002). [CrossRef]
  30. M. Mandal, S. Kundu, S. K. Ghosh, N. R. Jana, M. Panigrahi, and T. Pal, "Sniffing a single molecule through SERS using Aucore-Agshell bimetallic nanoparticles," Curr. Sci. 86, 556-559 (2004).
  31. R. H. Clarke, S. Londhe, and M. E. Womble, "Low-resolution Raman spectroscopy as an analytical tool for organic liquids," Spectroscopy 13, 28-35 (1998).
  32. S. Christesen, B. MacIver, L. Procell, D. Sorrick, M. Carrabba, and J. Bello, "Nonintrusive analysis of chemical agent identification sets using a portable fiber-optic Raman spectrometer," Appl. Spectrosc. 53, 850-855 (1999). [CrossRef]
  33. C. K. Mann and T. J. Vickers, "Chemical analysis with a low-resolution Raman spectrometer," Appl. Spectrosc. 54, 742-746 (2000). [CrossRef]
  34. N. Nuraje, I. A. Banerjee, R. I. MacCuspie, L. Yu, and H. Matsui, "Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays," J. Am. Chem. Soc. 126, 8088-8089 (2004). [CrossRef] [PubMed]
  35. T. Orzali, M. Casarin, G. Granozzi, M. Sambi, and A. Vittadini, "Bottom-up assembly of single-domain titania nanosheets on (1 × 2)-Pt(110)," Phys. Rev. Lett. 97, 156101 (2006). [CrossRef] [PubMed]
  36. G. D. Skidmore, M. Ellis, E. Parker, N. Sarkar, and R. Merkle, "Micro-assembly for top-down nanotechnology," in Proceedings of 2000 International Symposium on Micromechatronics and Human Science (2000), pp. 3-9.
  37. D. Whang, S. Jin, Y. Wu, and C. M. Lieber, "Large-scale hierarchical organization of nanowire arrays for integrated nanosystems," Nano. Lett. 3, 1255-1259 (2003). [CrossRef]
  38. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, "Electron beam lithography: resolution limits and applications," Appl. Surf. Sci. 164, 111-117 (2000). [CrossRef]
  39. M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, "Periodically structured metallic substrates for SERS," Sens. Actuators B 51, 285-291 (1998). [CrossRef]
  40. N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Gold particle interaction in regular arrays probed by surface enhanced Raman scattering," J. Chem. Phys. 120, 7141-7146 (2004). [CrossRef] [PubMed]
  41. J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, "Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays," Phys. Rev. B 72, 033407 (2005). [CrossRef]
  42. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays," Phys. Rev. B 66, 245407 (2002). [CrossRef]
  43. T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano. Lett. 4, 2309-2314 (2004). [CrossRef]
  44. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering," Opt. Express 14, 847-857 (2006). [CrossRef] [PubMed]
  45. T. Baum and D. J. Schiffrin, "Mechanistic aspects on anisotropic dissolution of materials: etching of single-crystal silicon in alkaline solutions," J. Chem. Soc. Faraday Trans. 94, 691-694 (1998). [CrossRef]
  46. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, "Comparison of anisotropic etching properties between KOH and TMAH solutions," Twelfth IEEE International Conference on Micro Electro Mechanical Systems, MEMS 1999 (IEEE, 1999), Vol. 4, pp. 312-320.
  47. J. Fruhauf and B. Hannemann, "Anisotropic multi-step etch processes of silicon," J. Micromech. Microeng. 7, 137-140 (1997). [CrossRef]
  48. C. L. Haynes and R. P. Van Duyne, "Plasmon-sampled surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 107, 7426-7433 (2003). [CrossRef]
  49. A. G. Brolo, D. E. Irish, and J. Lipkowski, "Surface-enhanced Raman spectra of pyridine and pyrazine adsorbed on a Au(210) single-crystal electrode," J. Phys. Chem. B 101, 3906-3909 (1997). [CrossRef]
  50. X. Wang, H. Wen, T. He, J. Zuo, C. Xu, and L. Fan-Chen, "Enhancement mechanism of SERS from cyanine dyes adsorbed on Ag2O colloids," Spectrochim. Acta Part A 53, 2495-2504 (1997). [CrossRef]
  51. S. P. Kuo, O. Tarasenko, S. Nourkbash, A. Bakhtina, and K. Levon, "Plasma effects on bacterial spores in a wet environment," New J. Phys. 8, 41-51 (2006). [CrossRef]
  52. V. G. R. Chada, E. A. Sanstad, R. Wang, and A. Driks, "Morphogenesis of Bacillus spore surfaces," J. Bacteriol. 185, 6255-6261 (2003). [CrossRef] [PubMed]
  53. M. Plomp, T. J. Leighton, K. E. Wheeler, and A. Malkin, "The high-resolution architectural and structural dynamics of Bacillus spores," Biophys. J. 88, 603-608 (2005). [CrossRef]
  54. H. Martens and T. Naes, Multivariate Calibration (Wiley, 1989).
  55. R. Kramer, Chemometric Techniques for Quantitative Analysis (Marcel Dekker, 1998).
  56. T. A. Alexander and C. D. Tran, "Near-infrared spectrometric determination of di- and tripeptides synthesized by a combinatorial solid-phase method," Anal. Chem. 73, 1062-1067 (2001). [CrossRef] [PubMed]
  57. K. R. Beebe, R. J. Pell, and M. B. Seasholtz, Chemometrics: A practical Guide (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited