OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 19 — Jul. 1, 2007
  • pp: 3911–3920

Investigation of OH X 2Π collisional kinetics in a flame using picosecond two-color resonant four-wave-mixing spectroscopy

Xiangling Chen and Thomas B. Settersten  »View Author Affiliations


Applied Optics, Vol. 46, Issue 19, pp. 3911-3920 (2007)
http://dx.doi.org/10.1364/AO.46.003911


View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-resolved two-color resonant four-wave-mixing spectroscopy was used to investigate collisions affecting the ground electronic state of the hydroxyl radical. Picosecond laser pulses provided adequate time resolution for measurements in an atmospheric-pressure methane–air flame. The grating spectroscopy technique used a combination of double resonance, time-delayed probing, and independent control of the polarization of each of the four fields involved in the wave-mixing process to enable measurement of the decay of laser-induced population, alignment, and orientation, as well as state-to-state transfer of these three moments. Results are presented for individual rotational levels of OH in X Π 3 / 2 2 ( v = 1 ) .

© 2007 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Combustion

History
Original Manuscript: October 16, 2006
Manuscript Accepted: December 27, 2006
Published: June 12, 2007

Citation
Xiangling Chen and Thomas B. Settersten, "Investigation of OH X2Π collisional kinetics in a flame using picosecond two-color resonant four-wave-mixing spectroscopy," Appl. Opt. 46, 3911-3920 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-19-3911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Species and Temperature (Plenum, 1981).
  2. K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-279 (1994). [CrossRef]
  3. K. Nyholm, R. Maier, C. G. Aminoff, and M. Kaivola, "Detection of OH in flames by using polarization spectroscopy," Appl. Opt. 32, 919-924 (1993). [CrossRef] [PubMed]
  4. T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000). [CrossRef]
  5. T. Dreier and D. J. Rakestraw, "Degenerate four-wave mixing diagnostics on OH and NH radicals in flames," Appl. Phys. B 50, 479-485 (1990). [CrossRef]
  6. T. A. Reichardt, W. C. Giancola, C. M. Shappert, and R. P. Lucht, "Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements," Appl. Opt. 38, 6951-6961 (1999). [CrossRef]
  7. R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence," Appl. Phys. B 62, 583-599 (1996). [CrossRef]
  8. C. H. Greene and R. N. Zare, "Determination of product population and alignment using laser-induced fluorescence,"J. Chem. Phys. 78, 6741-6753 (1983). [CrossRef]
  9. P. M. Doherty and D. R. Crosley, "Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,"Appl. Opt. 23, 713-721 (1984). [CrossRef] [PubMed]
  10. A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999). [CrossRef]
  11. S. Williams, L. A. Rahn, and R. N. Zare, "Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing," J. Chem. Phys. 104, 3947-3955 (1996). [CrossRef]
  12. R. A. Copeland and D. R. Crosley, "Λ-doublet transfer and propensities in collisions of OH (X2Πi, v = 2) with H2O," J. Chem. Phys. 81, 6400-6402 (1984). [CrossRef]
  13. K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997). [CrossRef]
  14. D. A. V. Kliner and R. L. Farrow, "Measurements of ground-state OH rotational energy-transfer rates," J. Chem. Phys. 110, 412-422 (1999). [CrossRef]
  15. K.-H. Gericke and F. J. Comes, "Energy partitioning in the reaction O(1D) + H2O → OH + OH. V. Rotational relaxation of OH (X2Π, v″, J″)," Chem. Phys. 65, 113-121 (1982). [CrossRef]
  16. P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991). [CrossRef]
  17. I. J. Wysong, J. B. Jeffries, and D. R. Crosley, "Parity propensities in rotational energy transfer of OH X2Πi with helium," J. Chem. Phys. 94, 7547-7549 (1991). [CrossRef]
  18. P. Andresen, D. Häusler, and H. W. Lülf, "Selective Λ-doublet population of OH in inelastic collisions with H2: A possible pump mechanism for the 2Π½ astronomical maser," J. Chem. Phys. 81, 571-572 (1984). [CrossRef]
  19. D. M. Sonnenfroh, R. G. Macdonald, and K. Liu, "A crossed-beam study of the state-resolved integral cross sections for the inelastic scattering of OH (X2Π) with CO and N2," J. Chem. Phys. 94, 6508-6518 (1991). [CrossRef]
  20. K. Schreel, J. Schleipen, A. Eppink, and J. J. ter Meulen, "State-to-state cross sections for rotational excitation of OH by collisions with He and Ar," J. Chem. Phys. 99, 8713-8722 (1993). [CrossRef]
  21. G. Zizak, G. A. Petrucci, C. L. Stevenson, and J. D. Winefordner, "Ground state saturated population distribution of OH in an acetylene-air flame measured by two optical double resonance pump-probe approaches," Appl. Opt. 30, 5270-5275 (1991). [CrossRef] [PubMed]
  22. J. Tobai, T. Dreier, and J. W. Daily, "Rotational level dependence of ground state recovery rates for OH X2Π(v″ = 0) in atmospheric pressure flames using the picosecond saturating-pump degenerate four-wave mixing probe technique," J. Chem. Phys. 116, 4030-4038 (2002). [CrossRef]
  23. A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995). [CrossRef]
  24. R. Tadday, A. Dreizler, A. A. Suvernev, and T. Dreier, "Measurement of orientational relaxation times of OH (A2Σ − X2Π) transitions in atmospheric pressure flames using picosecond time-resolved nonlinear spectroscopy," J. Mol. Struct. 410-411, 85-88 (1997).
  25. H. J. Crichton, M. L. Costen, and K. G. McKendrick, "Effect of collisions on one-color polarization spectroscopy of OH A2Σ+ − X2Π," J. Chem. Phys. 119, 9461-9468 (2003). [CrossRef]
  26. M. L. Costen, H. J. Crichton, and K. G. McKendrick, "Measurement of orientation and alignment moment relaxation by polarization spectroscopy: Theory and experiment," J. Chem. Phys. 120, 7910-7926 (2004). [CrossRef] [PubMed]
  27. P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997). [CrossRef]
  28. P. P. Radi and A. P. Kouzov, "State-resolved collisional energy transfer of OH, NH, and H2CO by two-color resonant four-wave mixing spectroscopy," J. Raman Spectrosc. 33, 925-933 (2002). [CrossRef]
  29. T. B. Settersten, R. L. Farrow, and J. A. Gray, "Infrared-ultraviolet double-resonance spectroscopy of OH in a flame," Chem. Phys. Lett. 369, 584-590 (2003). [CrossRef]
  30. S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, "Two-color resonant four-wave mixing: Analytical expressions for signal intensity," J. Chem. Phys. 106, 3090-3102 (1997). [CrossRef]
  31. A. P. Kouzov and P. P. Radi, "Collision-induced resonances in two-color resonant four-wave mixing spectra," Phys. Rev. A 63, 010701 (2000). [CrossRef]
  32. X. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004). [CrossRef]
  33. M. L. Costen and K. G. McKendrick, "Orientation and alignment moments in two-color polarization spectroscopy," J. Chem. Phys. 122, 164309 (2005). [CrossRef] [PubMed]
  34. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004). [CrossRef]
  35. W. C. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Tech. Rep. Stanford University Report ME 270 HO no. 7 (Stanford University, 1986).
  36. J. B. Norman and R. W. Field, "Collision-induced angular momentum reorientation and rotational energy transfer in CaF(A 2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990). [CrossRef]
  37. T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2," J. Chem. Phys. 98, 5460-5468 (1993). [CrossRef]
  38. Y. Prior, "A complete expression for the third-order susceptibility (χ(3))--perturbative and diagrammatic approaches," IEEE J. Quantum Electron. QE-20, 37-42 (1984). [CrossRef]
  39. J. G. Fujimoto and T. K. Yee, "Diagrammatic density matrix theory of transient four-wave mixing and the measurement of transient phenomena," IEEE J. Quantum Electron. QE-22, 1215-1228 (1986). [CrossRef]
  40. S. Williams, R. N. Zare, and L. A. Rahn, "Reduction of degenerate four-wave mixing spectra to relative populations I. Weak-field limit," J. Chem. Phys. 101, 1072-1092 (1994). [CrossRef]
  41. F. Di Teodoro and E. F. McCormack, "State-selective quantum beat spectroscopy via coherent control of Liouville-pathway interference in two-colour resonant four-wave mixing,"J. Phys. B 32, 4389-4404 (1999). [CrossRef]
  42. E. F. McCormack and E. Sarajlic, "Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain," Phys. Rev. A 63, 023406 (2001). [CrossRef]
  43. J. T. Fourkas, R. Trebino, and M. D. Fayer, "The grating decomposition method: a new approach for understanding polarization-selective transient grating experiments. I. Theory,"J. Chem. Phys. 97, 69-77 (1992). [CrossRef]
  44. T. K. Yee and T. K. Gustafson, "Diagrammatic analysis of the density operator for nonlinear optical calculations: pulsed and cw responses," Phys. Rev. A 18, 1597-1617 (1978). [CrossRef]
  45. T. B. Settersten and X. Chen, "Measurement of collision-induced relaxation of population, orientation, and alignment using time-resolved two-color resonant four-wave-mixing spectroscopy," (to be published).
  46. T. A. W. Wasserman, P. H. Vaccaro, and B. R. Johnson, "Degenerate four-wave mixing spectroscopy as a probe of orientation and alignment in molecular systems," J. Chem. Phys. 108, 7713-7738 (1998). [CrossRef]
  47. K. Blum, Density Matrix Theory and Applications (Gordon and Breach, 1996).
  48. P. H. Paul, DRFM: A new package for the evaluation of gas-phase transport properties, Tech. Rep. SAND98-8203 (Sandia National Laboratories, 1997).
  49. P. Beaud, P. P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, and T. Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998). [CrossRef]
  50. R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments," Appl. Phys. B 63, 403-418 (1996).
  51. T. A. Reichardt and R. P. Lucht, "Degenerate four-wave mixing spectroscopy with short-pulse lasers: theoretical analysis," J. Opt. Soc. Am. B 13, 2807-2816 (1996). [CrossRef]
  52. S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited