OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 19 — Jul. 1, 2007
  • pp: 3946–3957

In situ measurements of nitric oxide in coal-combustion exhaust using a sensor based on a widely tunable external-cavity GaN diode laser

Thomas N. Anderson, Robert P. Lucht, Soyuz Priyadarsan, Kalyan Annamalai, and Jerald A. Caton  »View Author Affiliations

Applied Optics, Vol. 46, Issue 19, pp. 3946-3957 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diode-laser-based sensor has been developed to measure nitric oxide mole fractions using absorption spectroscopy. The sensor is based on sum-frequency mixing of a 395   nm external-cavity diode laser (ECDL) and a 532   nm laser in a beta-barium-borate crystal. Using a new tuning scheme, the GaN ECDL wavelength was modulated over 90   GHz without mode hops. The sensor was applied for measurements of the NO mole fraction in the exhaust of a laboratory-scale, 30   kW t coal-fired boiler burner. Absorption measurements were successfully performed despite severe attenuation by scattering from ash particles in the exhaust stream and on the exhaust-section windows. A detection limit ( 1 σ ) of 4.5 ppm   m / Hz at 700 K was demonstrated in coal- combustion exhaust at a maximum detection rate of 5   Hz .

© 2007 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(140.2020) Lasers and laser optics : Diode lasers
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:

Original Manuscript: October 9, 2006
Revised Manuscript: February 25, 2007
Manuscript Accepted: February 27, 2007
Published: June 12, 2007

Thomas N. Anderson, Robert P. Lucht, Soyuz Priyadarsan, Kalyan Annamalai, and Jerald A. Caton, "In situ measurements of nitric oxide in coal-combustion exhaust using a sensor based on a widely tunable external-cavity GaN diode laser," Appl. Opt. 46, 3946-3957 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U.S. Environmental Protection Agency, National Air Quality and Emissions Trends Report: 2003 Special Studies Edition, EPA 454/R-03-005 (U.S. Environmental Protection Agency, Office of Air Quality and Standards, 2003), www.epa.gov/air/airtrends/aqtrnd03.
  2. J. M. Beer, "Combustion technology developments in power generation in response to environmental challenges," Prog. Energy Combust. Sci. 26, 301-327 (2000). [CrossRef]
  3. A. Williams, M. Pourkashanian, and J. M. Jones, "Combustion of pulverised coal and biomass," Prog. Energy Combust. Sci. 27, 587-610 (2001). [CrossRef]
  4. L. D. Smoot, S. C. Hill, and H. Xu, "NOx control through reburning," Prog. Energy Combust. Sci. 24, 385-408 (1998). [CrossRef]
  5. A. Molina, E. G. Eddings, D. W. Pershing, and A. F. Sarofim, "Char nitrogen conversion: implications to emissions from coal-fired utility boilers," Prog. Energy Combust. Sci. 26, 507-531 (2000). [CrossRef]
  6. S. C Hill and L. D. Smoot, "Modeling of nitrogen oxides formation and destruction in combustion systems," Prog. Energy Combust. Sci. 26, 417-458 (2000). [CrossRef]
  7. P. Glarborg, A. D. Jensen, and J. E. Johnsson, "Fuel nitrogen conversion in solid fuel fired systems," Prog. Energy Combust. Sci. 29, 89-113 (2003). [CrossRef]
  8. N. Docquier and S. Candel, "Combustion control and sensors: a review," Prog. Energy Combust. Sci. 28, 107-150 (2002). [CrossRef]
  9. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, "Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers," Proc. Combust. Inst. 30, 1611-1618 (2005). [CrossRef]
  10. A. Khorsandi, U. Willer, L. Wondraczek, and W. Schade, "In situ and on-line monitoring of CO in an industrial glass furnace by mid-infrared difference-frequency generation laser spectroscopy," Appl. Opt. 43, 6481-6486 (2004). [CrossRef] [PubMed]
  11. H. Teichert, T. Fernholz, and V. Ebert, "Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers," Appl. Opt. 42, 2043-2051 (2003). [CrossRef] [PubMed]
  12. E. Schlosser, T. Fernholz, H. Teichert, and V. Ebert, "In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers," Spectrochim. Acta Part A 58, 2347-2359 (2002). [CrossRef]
  13. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, "Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants," Appl. Phys. B 75, 237-247 (2002). [CrossRef]
  14. M. G. Allen, B. L. Upschulte, D. M. Sonnenfroh, W. J. Kessler, and P. A. Mulhall, "Overview of diode laser measurements in large-scale test facilities," AIAA Paper 2000-2452 presented at the Twenty-first AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Denver, Colo., 19-22 June 2000.
  15. W. J. Kessler, D. M. Sonnenfroh, B. L. Upschulte, and M. G. Allen, "Near-IR diode lasers for in situ measurements of combustor and aeroengine emissions," AIAA paper 97-2706, presented at the Thirty-third AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wash., 6-9 July 1997 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1997).
  16. D. M. Sonnenfroh and M. G. Allen, "Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8 μm room-temperature diode laser," Appl. Opt. 36, 7970-7977 (1997). [CrossRef]
  17. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, "A diode-laser absorption sensor system for combustion emission measurements," Meas. Sci. Technol. 9, 327-338 (1998). [CrossRef]
  18. M. Snels, C. Corsi, F. D'Amato, M. De Rosa, and G. Modugno, "Pressure broadening in the second overtone of NO, measured with a near-infrared DFB laser," Opt. Commun. 159, 80-83 (1999). [CrossRef]
  19. D. B. Oh and A. C. Stanton, "Measurement of nitric oxide with an antimonide diode laser," Appl. Opt. 36, 3294-3297 (1997). [CrossRef] [PubMed]
  20. P. K. Falcone, R. K. Hanson, and C. H. Kruger, "Tunable diode laser absorption measurements of nitric oxide in combustion gases," Combust. Sci. Technol. 35, 81-99 (1983). [CrossRef]
  21. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998). [CrossRef]
  22. A. Mohamed, B. Rosier, D. Henry, Y. Louvet, and P. L. Varghese, "Tunable diode laser measurements on nitric oxide in a hypersonic wind tunnel," AIAA J. 34, 494-499 (1996). [CrossRef]
  23. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers," Appl. Opt. 40, 812-820 (2001). [CrossRef]
  24. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002). [CrossRef]
  25. S. Wehe, M. Allen, L. Xiang, J. Jeffries, and R. Hanson, "NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications," paper AIAA 03-0588, presented at the Forty-first AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6-9 January 2003 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 2003).
  26. G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005). [CrossRef]
  27. J. Luque and D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009 (SRI International, 1999), www.sri.com/psd/lifbase.
  28. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
  29. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Development of a narrowband, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy," Appl. Opt. 37, 3954-3960 (1998). [CrossRef]
  30. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, "Diode-laser-based ultraviolet absorption sensor for nitric oxide," Applied Phys. B 75, 113-117 (2002). [CrossRef]
  31. T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, and L. Flamand, "Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor," Appl. Opt. 44, 1491-1502 (2005). [CrossRef] [PubMed]
  32. L. Hildebrandt, R. Knispel, S. Stry, J. R. Sacher, and F. Schael, "Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy," Appl. Opt. 42, 2110-2118 (2003). [CrossRef] [PubMed]
  33. H. Leinen, D. Glaessner, H. Metcalf, R. Wynands, D. Haubrich, and D. Meschede, "GaN blue diode lasers: a spectroscopist's view," Appl. Phys. B 70, 567-571 (2000). [CrossRef]
  34. See http://www.sacher-laser.com.
  35. J. Hult, I. S. Burns, and C. F. Kaminski, "Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers," Appl. Opt. 44, 3675-3685 (2005).
  36. U. Gustafsson, G. Somesfalean, J. Alnis, and S. Svanberg, "Frequency-modulation spectroscopy with blue diode lasers," Appl. Opt. 39, 3774-3780 (2000). [CrossRef]
  37. H. Scheibner, S. Franke, S. Solyman, J. F. Behnke, C. Wilke, and A. Dinklage, "Laser absorption spectroscopy with a blue diode laser in an aluminum hollow cathode discharge," Rev. Sci. Instrum. 73, 378-382 (2002). [CrossRef]
  38. O. M. Marago, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003). [CrossRef]
  39. T. N. Anderson, J. K. Magnuson, and R. P. Lucht, "Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury," Appl. Phys. B 87, 341-353 (2007). [CrossRef]
  40. S. Arumugam, "Nitrogen oxides emission control through reburning with biomass in coal-fired power plants," M. S. thesis, (Texas A&M University, 2004).
  41. K. Annamalai, B. Thien, and J. Sweeten, "Co-firing of coal and cattle feedlot biomass (FB) fuels. Part II. Performance results from 30 kWt (100,000 BTU/h) laboratory scale boiler burner," Fuel 82, 1183-1193 (2003). [CrossRef]
  42. S. Frazzitta, K. Annamalai, and J. Sweeten, "Performance of a burner with coal and coal-bio-solid fuel blends," J. Propul. Power 15, 181-186 (1999). [CrossRef]
  43. K. Annamalai and J. M. Sweeten, "Reburn system with feedlot biomass for maximum NOx reduction in power plants," U. S. patent 6 ,973,883 (13 December 2005).
  44. R. P. Lucht, T. N. Anderson, S. Priyadarsan, S. Arumugam, R. Barron-Jimenez, J. A. Caton, and K. Annamalai, "Diode-laser-based sensor measurements of nitric oxide in particulate-laden combustion exhaust streams," in Proceeding of the Twentieth Annual International Pittsburgh Coal Conference (Pittsburgh, 2003), Paper 14-2.
  45. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, "Diode-laser absorption sensor for line-of-sight gas temperature distributions," Appl. Opt. 40, 4404-4415 (2001). [CrossRef]
  46. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, "Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor," Appl. Opt. 44, 6729-6740 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited