OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 19 — Jul. 1, 2007
  • pp: 4032–4040

Spontaneous emission from the C3 radical in carbon plasma

László Nemes, Anna M. Keszler, Christian G. Parigger, James O. Hornkohl, Hope A. Michelsen, and Vadim Stakhursky  »View Author Affiliations

Applied Optics, Vol. 46, Issue 19, pp. 4032-4040 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spontaneous emission measurements are discussed for the Swings transitions of the C 3 radical in laser-generated graphite plasma, and the spectroscopy of the C 3 radical in carbon vapor and plasma is summarized. A review is given of some theoretical calculations and emission spectroscopic investigations are presented. Time-averaged, laser-induced optical breakdown spectra are reported from Nd:YAG laser generated graphite microplasma. In 200–300 Torr of argon and helium, and depending on the specific experimental configuration, a weak emission continuum is observed centered at 400 nm when using a laser fluence of typically 1 J / cm 2 . Such continua were not detected in our previous experiments using focused laser radiation. The possibilities for the origin of this continuum are considered.

© 2007 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6390) Spectroscopy : Spectroscopy, molecular
(350.5400) Other areas of optics : Plasmas

ToC Category:
Laser-Induced Breakdown Spectroscopy, Plasmas, and Emission

Original Manuscript: October 12, 2006
Revised Manuscript: February 7, 2007
Manuscript Accepted: February 8, 2007
Published: June 12, 2007

László Nemes, Anna M. Keszler, Christian G. Parigger, James O. Hornkohl, Hope A. Michelsen, and Vadim Stakhursky, "Spontaneous emission from the C3 radical in carbon plasma," Appl. Opt. 46, 4032-4040 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Nemes, A. M. Keszler, C. G. Parigger, J. O. Hornkohl, H. A. Michelsen, and V. Stakhursky, "The C3 Puzzle: formation of and spontaneous emission from the C3 radical in carbon plasma," Internet Electron. J. Mol. Des. 5, 150-167 (2006).
  2. A. Van Orden and R. J. Saykally, "Small carbon clusters: spectroscopy, structure, and energetics," Chem. Rev. 98, 2313-2356 (1998). [CrossRef]
  3. W. Huggins, "Preliminary note on the photographic spectrum of Comet b 1881," Proc. R. Soc. London 33, 1-3 (1881). [CrossRef]
  4. G. Herzberg, "Laboratory production of the λ 4050 group occurring in cometary spectra; further evidence for the presence of CH2 molecules in comets," Astrophys. J. 96, 314-315 (1942). [CrossRef]
  5. A. E. Douglas, "Laboratory studies of the λ 4050 group of cometary spectra," Astrophys. J. 114, 466-468 (1951). [CrossRef]
  6. L. Gausset, G. Herzberg, A. Lagerquist, and B. Rosen, "Spectrum of the C3 molecule," Discuss. Faraday Soc. 35, 113-117 (1963). [CrossRef]
  7. L. Gausset, G. Herzberg, A. Lagerquist, and B. Rosen, "Analysis of the 4050 Å group of the C3 molecule," Astrophys. J. 142, 45-76 (1965). [CrossRef]
  8. W. J. Balfour, J. Cao, C. V. V. Prasad, and C. X. W. Qian, "Laser-induced fluorescence spectroscopy of the A1Πu−X1Σg+ transition in jet-cooled C3," J. Chem. Phys. 101, 10343-10349 (1994). [CrossRef]
  9. N. H. Kiess and A. M. Bass, "The λ-4050 group of cometary spectra in the acetylene-oxygen flame," J. Chem. Phys. 22, 569-570 (1954). [CrossRef]
  10. J. G. Phillips and L. Brewer, "An ultraviolet continuum in the spectrum of carbon," Mem. Soc. R. Sci. Liege Collect. 4 , 15, 341-351 (1955).
  11. A.McKellar and E. H. Richardson, "Relative spectral gradients of several cool carbon stars in the blue and violet regions," Mem. Soc. R. Sci. Liege Collect. 4 , 15, 256-275 (1955).
  12. N. H. Kiess and H. P. Broida, "Spectrum of the C3 molecule between 3600 Å and 4200 Å," Can. J. Phys. 34, 1471-1479 (1956).
  13. J. G. Phillips, "Relative temperature coefficients of features in the C3 spectrum," Mem. Soc. R. Sci. Liege Collect. 4 , 18, 538-543 (1957).
  14. G. V. Marr, "The luminous mantle of fuel-rich oxyacetylene flames, II. Free radical and continuum intensities and their influence on C3 emissions," Can. J. Phys. 35, 1275-1283 (1957). [CrossRef]
  15. L. Brewer and J. L. Engelke, "Spectrum of C3," J. Chem. Phys. 36, 992-998 (1962). [CrossRef]
  16. H. Henning, "Die kontinuierliche Strahlung thermischer Kohlenstoffplasmen," Z. Astrophys. 62, 109-120 (1965).
  17. D. M. Cooper and J. J. Jones, "An experimental determination of the cross section of the Swings band system of C3," J. Quant. Spectrosc. Radiat. Transfer 22, 201-208 (1979). [CrossRef]
  18. W. L. Snow and W. L. Wells, "The spectral opacity of triatomic carbon measured in a graphite tube furnace over the 280 to 600 nm wavelength range," J. Chem. Phys. 73, 2547-2551 (1980). [CrossRef]
  19. M. Anselment, R. Seth Smith, E. Daykin, and L. F. Dimauro, "Optical emission studies on graphite in a laser/vaporization supersonic jet cluster source," Chem. Phys. Lett. 134, 444-449 (1987). [CrossRef]
  20. E. A. Rohlfing, "Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source," J. Chem. Phys. 89, 6103-6112 (1988). [CrossRef]
  21. P. Monchicourt, "Onset of carbon cluster formation inferred from light emission in a laser-induced expansion," Phys. Rev. Lett. 66, 1430-1433 (1991). [CrossRef] [PubMed]
  22. J. Luque, W. Juchmann, and J. B. Jeffries, "Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet," J. Appl. Phys. 82, 2072-2081 (1997). [CrossRef]
  23. G. A. Raiche and J. B. Jeffries, "Observation and spatial distribution of C3 in a DC arcjet plasma during diamond deposition using laser-induced fluorescence," Appl. Phys. B 64, 593-597 (1997). [CrossRef]
  24. N. V. Tarasenko, "Laser-induced fluorescence and time-resolved emission spectroscopy of laser ablation plasma," in Proceedings of 25th EPS Conference on Controlled Fusion and Plasma Physics (ECA, 1998) 22C, 1647-1650.
  25. S. Arepalli, P. Nikolaev, W. Holmes, and C. D. Scott, "Diagnostics of laser-produced plume under carbon nanotube growth conditions," Appl. Phys. A 69, 1-9 (1999). [CrossRef]
  26. S. Arepalli and C. D. Scott, "Spectral measurements in production of single-wall carbon nanotubes by laser ablation," Chem. Phys. Lett. 302, 139-145 (1999). [CrossRef]
  27. K. Takizawa, K. Sasaki, and K. Kadota, "Characteristics of C3 radicals in high-density C4F8 plasmas studied by laser-induced fluorescence spectroscopy," J. Appl. Phys. 88, 6201-6208 (2000). [CrossRef]
  28. K. Sasaki, T. Wakasaki, and K. Kadota, "Observation of continuum optical emission from laser-ablation carbon plumes," Appl. Surf. Sci. 197-198, 197-201 (2002). [CrossRef]
  29. H. R. Leider, O. H. Krikorian, and D. A. Young, "Thermodynamic properties of carbon up to the critical point," Carbon 11, 555-563 (1973). [CrossRef]
  30. W. Chase, Jr., "NIST-JANAF Thermochemical Tables, 4th ed., Part 1, Al-Co," J. Chem. Ref. Data , Monograph 9, Vol. 14 (1998).
  31. G. Herzberg, K. F. Herzfeld, and E. Teller, "The heat of sublimation of graphite," J. Phys. Chem. 41, 325-331 (1937). [CrossRef]
  32. M. Martin, "C2 spectroscopy and kinetics, invited review," J. Photochem. Photobiol. A 60, 263-289 (1992). [CrossRef]
  33. K. Sasaki, T. Wakasaki, S. Matsui, and K. Kadota, "Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy," J. Appl. Phys. 91, 4033-4039 (2002). [CrossRef]
  34. G. Monninger, M. Förderer, P. Gürtler, S. Kalhofer, S. Petersen, L. Nemes, P. G. Szalay, and W. Krätschmer, "Vacuum ultraviolet spectroscopy of the carbon molecule C3 in matrix isolated state: Experiment and theory," J. Phys. Chem. A 106, 5779-5788 (2002). [CrossRef]
  35. I. Cermak, M. Förderer, S. Kalhofer, H. Stopka-Ebeler, and W. Krätschmer, "Laser-induced emission spectroscopy of matrix-isolated carbon molecules: experimental setup and new results on C3," J. Chem. Phys. 108, 10129-10142 (1998). [CrossRef]
  36. Z. Cao, M. Mühlhäuser, M. Hanrath, and S.D. Peyerimhoff, "Study of possible photodissociation channels in linear carbon clusters Cn (n=4-6)," Chem. Phys. Lett. 351, 327-334 (2002). [CrossRef]
  37. F. Varga and L. Nemes, "Emission spectroscopic studies of laser-induced graphite plasmas," J. Mol. Struct. 480-481, 273-279 (1999).
  38. C. G. Parigger, J. O. Hornkohl, A. M. Keszler, and L. Nemes, "Laser-induced breakdown spectroscopy: molecular spectra with BESP and NEQAIR," in OSA Trends in Optics and Photonics (TOPS), Laser Induced Plasma Spectroscopy and Applications, OSA Technical Digest, Postconference Edition, Vol. 81 (Optical Society of America, 2002), pp. 102-103.
  39. C. G. Parigger, J. O. Hornkohl, A. M. Keszler, and L. Nemes, "Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite," Appl. Opt. 42, 6192-6197 (2003). [CrossRef] [PubMed]
  40. A. Keszler and L. Nemes, "Time averaged emission spectra of Nd:YAG laser induced carbon plasmas," J. Mol. Struct. 695-696, 211-218 (2004). [CrossRef]
  41. L. Nemes, A. M. Keszler, J. O. Hornkohl, and C. G. Parigger, "Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown," Appl. Opt. 44, 3661-3667 (2005). [CrossRef] [PubMed]
  42. J. O. Hornkohl, C. G. Parigger, and L. Nemes, "A new diatomic Hönl-London factor computer program," Appl. Opt. 44, 3686-3695 (2005). [CrossRef] [PubMed]
  43. J. O. Hornkohl, C. Parigger, and J. W. L. Lewis, "Temperature measurements from CN spectra in a laser-induced plasma," J. Quant. Spectrosc. Radiat. Transfer 46, 405-411 (1991). [CrossRef]
  44. C. G. Parigger, D. H. Plemmons, J. O. Hornkohl, and J. W. L. Lewis, "Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system," J. Quant. Spectrosc. Radiat. Transfer 52, 707-711 (1994). [CrossRef]
  45. A. P. Thorne, U. Litzen, and S. Johansson, Spectrophysics: Principles and Applications (Springer-Verlag, 1999).
  46. V. Stakhursky, High Temperature Simulation of C3 (Ohio State University, 2004), http://www.chemistry.ohio-state.edu/~vstakhur/C3bands.php.
  47. Ch. Jungen and A. J. Merer, "Orbital angular momentum in triatomic molecules. IV. The A1Πu state of C3," Mol. Phys. 40, 95-114 (1980). [CrossRef]
  48. D. C. Tyte, S. H. Innanen, and R. W. Nicholls, Indentification Atlas of Molecular Spectra, Part 5. The C2A3Πg−X′3Πu Swan System (York University, 1967).
  49. R. H. Huddlestone and S. L. Leonard, Plasma Diagnostic Techniques (Academic, 1968).
  50. T. Wakasaki, K. Sasaki, and K. Kadota, "Collisional quenching of C2(d3Πg) and C3(A1Πu) and its application to the estimation of absolute particle density in laser-ablation carbon plumes," Jpn. J. Appl. Phys. 41, 5792-5796 (2002). [CrossRef]
  51. H. A. Michelsen, "Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles," J. Chem. Phys. 118, 7012-7045 (2003). [CrossRef]
  52. S. Kalhofer, I. Cermak, M. Förderer, G. Monninger, I. Cermaková, W. Krätschmer, P. Gürtler, and S. Petersen, "Emission and absorption spectroscopy of matrix isolated carbon molecules," in Proceedings of EUCMOS XXIV (Prague, 1998).
  53. F. Ossler, T. Metz, and M. Aldén, "Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures, I. Cell measurements," Appl. Phys. B 72, 465-478 (2001).
  54. F. Ossler, T. Metz, and M. Aldén, "Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements," Appl. Phys. B 72, 479-489 (2001).
  55. C. G. Parigger, D. H. Plemmons, and E. Oks, "Balmer series Hβ measurements in a laser-induced hydrogen plasma," Appl. Opt. 42, 5992-6000 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited