OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 19 — Jul. 1, 2007
  • pp: 4117–4124

Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra

Laura A. Kranendonk, Andrew W. Caswell, and Scott T. Sanders  »View Author Affiliations


Applied Optics, Vol. 46, Issue 19, pp. 4117-4124 (2007)
http://dx.doi.org/10.1364/AO.46.004117


View Full Text Article

Enhanced HTML    Acrobat PDF (582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A robust method is described for calculating temperature, mole fraction, and pressure from measured absorption spectra (absorption coefficients versus optical frequency). The key components to the method are smoothing, differentiation, spectral axis warping, and linear least-squares fitting. The method works best when spectra span a full rotational branch of the target molecule, but in principle it works for any spectral span. The examples presented assume a measured spectrum over the 7246.4 7518.8 cm 1 range, which encompasses the R branch of the v 1 + v 3 band of H 2 O ; however, the techniques should work for most measured spectra.

© 2007 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.1030) Spectroscopy : Absorption

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 27, 2006
Revised Manuscript: December 29, 2006
Manuscript Accepted: March 1, 2007
Published: June 12, 2007

Citation
Laura A. Kranendonk, Andrew W. Caswell, and Scott T. Sanders, "Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra," Appl. Opt. 46, 4117-4124 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-19-4117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Ku and P. S. Greenberg, "Temperature and radiative heat flux measurements in microgravity jet diffusion flames," in Proceedings of the 1997 Fourth International Microgravity Combustion Workshop, 19-21 May 1997 (NASA, 1997), pp. 211-216.
  2. K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, 2002).
  3. A. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Overseas Publishers Association, 1996).
  4. T. Kraetschmer, J. W. Walewski, and S. T. Sanders, "All-fiber laser for generating interlaced continuous-wave frequency combs and application to Fourier-transform spectroscopy," Opt. Eng. 45, 050502 (2006).
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and application for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  6. J. Walewski, J. Filipa, C. Hagen, and S. Sanders, "Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua," Appl. Phys. B 83, 75-79 (2006). [CrossRef]
  7. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005). [CrossRef] [PubMed]
  8. P. W. Atkins, Physical Chemistry (Oxford U. Press, 2001).
  9. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy (McGraw-Hill, 1994).
  10. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, Brown, L. R. Nemtchinov, V. Varanasi, and P. Varanasi, "The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition," J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1996). [CrossRef]
  11. E. E. Whiting, "An empirical approximation to the Voigt profile," J. Quant. Spectrosc. Radiat. Transfer 8, 1374-1384 (1968). [CrossRef]
  12. A. K. Hui, B. H. Armstrong, and A. A. Wray, "Rapid computation of the Voigt and complex error functions," J. Quant. Spectrosc. Radiat. Transfer 19, 509-516 (1978). [CrossRef]
  13. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  14. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, "A high-accuracy computed water line list," Mon. Not. R. Astron. Soc. 368, 1087-1094 (2006). [CrossRef]
  15. M. Vidler and J. Tennyson, "Accurate partition function and thermodynamic data for water," J. Chem. Phys. 113, 9766-9771 (2000). [CrossRef]
  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C--The Art of Scientific Computing (Cambridge U. Press, 1992).
  17. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. 31, 783-790 (2007). [CrossRef]
  18. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, "Wavelength-agile sensor applied for HCCI engine measurements," Proc. Combust. Inst. 30, 1619-1627 (2005). [CrossRef]
  19. D. Lisak, J. T. Hodges, and R. Ciurylo, "Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy," Phys. Rev. A 73, 012507 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited