OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 19 — Jul. 1, 2007
  • pp: 4144–4154

Recovering fluorescent spectra with an RGB digital camera and color filters using different matrix factorizations

Juan L. Nieves, Eva M. Valero, Javier Hernández-Andrés, and Javier Romero  »View Author Affiliations


Applied Optics, Vol. 46, Issue 19, pp. 4144-4154 (2007)
http://dx.doi.org/10.1364/AO.46.004144


View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The aim of a multispectral system is to recover a spectral function at each image pixel, but when a scene is digitally imaged under a light of unknown spectral power distribution (SPD), the image pixels give incomplete information about the spectral reflectances of objects in the scene. We have analyzed how accurately the spectra of artificial fluorescent light sources can be recovered with a digital CCD camera. The red-green-blue (RGB) sensor outputs are modified by the use of successive cutoff color filters. Four algorithms for simplifying the spectra datasets are used: nonnegative matrix factorization (NMF), independent component analysis (ICA), a direct pseudoinverse method, and principal component analysis (PCA). The algorithms are tested using both simulated data and data from a real RGB digital camera. The methods are compared in terms of the minimum rank of factorization and the number of sensors required to derive acceptable spectral and colorimetric SPD estimations; the PCA results are also given for the sake of comparison. The results show that all the algorithms surpass the PCA when a reduced number of sensors is used. The experimental results suggest a significant loss of quality when more than one color filter is used, which agrees with the previous results for reflectances. Nevertheless, an RGB digital camera with or without a prefilter is found to provide good spectral and colorimetric recovery of indoor fluorescent lighting and can be used for color correction without the need of a telespectroradiometer.

© 2007 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(150.2950) Machine vision : Illumination
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1730) Vision, color, and visual optics : Colorimetry

ToC Category:
Vision and color

History
Original Manuscript: November 20, 2006
Revised Manuscript: February 26, 2007
Manuscript Accepted: March 1, 2007
Published: June 12, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Juan L. Nieves, Eva M. Valero, Javier Hernández-Andrés, and Javier Romero, "Recovering fluorescent spectra with an RGB digital camera and color filters using different matrix factorizations," Appl. Opt. 46, 4144-4154 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-19-4144

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited