OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 2 — Jan. 10, 2007
  • pp: 243–252

Accurate modeling of spectral fine-structure in Earth radiance spectra measured with the Global Ozone Monitoring Experiment

Rutger van Deelen, Otto P. Hasekamp, and Jochen Landgraf  »View Author Affiliations


Applied Optics, Vol. 46, Issue 2, pp. 243-252 (2007)
http://dx.doi.org/10.1364/AO.46.000243


View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present what we believe to be a novel approach to simulating the spectral fine structure ( < 1 nm ) in measurements of spectrometers such as the Global Ozone Monitoring Experiment (GOME). GOME measures the Earth's radiance spectra and daily solar irradiance spectra from which a reflectivity spectrum is commonly extracted. The high-frequency structures contained in such a spectrum are, apart from atmospheric absorption, caused by Raman scattering and by a shift between the solar irradiance and the Earth's radiance spectrum. Normally, an a priori high-resolution solar spectrum is used to simulate these structures. We present an alternative method in which all the required information on the solar spectrum is retrieved from the GOME measurements. We investigate two approaches for the spectral range of 390 400 nm . First, a solar spectrum is reconstructed on a fine spectral grid from the GOME solar measurement. This approach leads to undersampling errors of up to 0.5% in the modeling of the Earth's radiance spectra. Second, a combination of the solar measurement and one of the Earth's radiance measurement is used to retrieve a solar spectrum. This approach effectively removes the undersampling error and results in residuals close to the GOME measurement noise of 0.1% .

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(040.1240) Detectors : Arrays
(070.4790) Fourier optics and signal processing : Spectrum analysis
(290.5860) Scattering : Scattering, Raman
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman

ToC Category:
Spectroscopy

History
Original Manuscript: July 3, 2006
Revised Manuscript: September 7, 2006
Manuscript Accepted: September 8, 2006

Citation
Rutger van Deelen, Otto P. Hasekamp, and Jochen Landgraf, "Accurate modeling of spectral fine-structure in Earth radiance spectra measured with the Global Ozone Monitoring Experiment," Appl. Opt. 46, 243-252 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-2-243


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Bednarz, ed., Global Ozone Monitoring Experiment Users Manual, European Space Research and Technology Centre (ESTEC, 1995).
  2. P. Fletcher and F. Lodge, eds., GOME Geophysical Validation Campaign, ESA WPP-108 (European Space Agency--European Space Research Institute, 1996).
  3. J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weissenmayer, A. Richter, R. de Beek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, and M. Eisinger, "The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results," J. Atmos. Sci. 56, 151-175 (1999). [CrossRef]
  4. J. H. G. M. van Geffen and R. F. van Oss, "Wavelength calibration of spectra measured by the Global Ozone Monitoring Experiment by use of a high-resolution reference spectrum," Appl. Opt. 42, 2739-2753 (2003). [CrossRef] [PubMed]
  5. R. Spurr, D. Loyola, W. Thomas, W. Balzer, E. Mikusch, B. Aberle, S. Slijkhuis, T. Ruppert, M. van Roozendael, J.-C. Lambert, and T. Soebijanta, "GOME level 1-to-2 data processor 3.0: a major upgrade of the GOME/ERS-2 total ozone retrieval algorithm," Appl. Opt. 44, 7196-7209 (2005). [CrossRef] [PubMed]
  6. O. P. Hasekamp and J. Landgraf, "Ozone profile retrieval from backscattered ultraviolet radiances: the inverse problem solved by regularization," J. Geophys. Res. 106, 8077-8088 (2001). [CrossRef]
  7. S. Beirle, U. Platt, M. Wenig, and T. Wagner, "Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources," Atmos. Chem. Phys. 3, 2225-2232 (2003). [CrossRef]
  8. K. Boersma, H. Eskes, E. Meijer, and H. Kelder, "Estimates of lightning NOx production from GOME satellite observations," Atmos. Chem. Phys. 5, 2311-2331 (2005). [CrossRef]
  9. M. Eisinger and J. Burrows, "Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument," Geophys. Res. Lett. 25, 4177-4180 (1998). [CrossRef]
  10. K. Chance, "Analysis of BrO measurements from the Global Ozone Monitoring Experiment," J. Geophys. Res. 25, 3335-3338 (1998).
  11. J. Joiner, A. P. Vasilkov, D. E. Flittner, J. F. Gleason, and P. K. Bhartia, "Retrieval of cloud pressure and oceanic chlorophyll content using Raman scattering in GOME ultraviolet spectra," J. Geophys. Res. 109, D01109, doi: (2004). [CrossRef]
  12. M. Vountas, V. V. Rozanov, and J. P. Burrows, "Ring effect: impact of rotational Raman scattering on radiative transfer in Earth's atmosphere," J. Quant. Spectrosc. Radiat. Transfer 60, 943-961 (1998). [CrossRef]
  13. R. de Beek, M. Vountas, V. V. Rozanov, A. Richter, and J. P. Burrows, "The Ring effect in the cloudy atmosphere," Geophys. Res. Lett. 28, 721-724 (2001). [CrossRef]
  14. K. Chance and R. J. D. Spurr, "Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum," Appl. Opt. 36, 5224-5230 (1997). [CrossRef] [PubMed]
  15. C. E. Sioris and W. F. J. Evans, "Filling in of Fraunhofer and gas-absorption lines in sky spectra as caused by rotational Raman scattering," Appl. Opt. 38, 2706-2713 (1999). [CrossRef]
  16. D. M. Stam, I. Aben, and F. Helderman, "Skylight polarization: numerical simulation of the Ring effect," J. Geophys. Res. 107, 4419, doi: (2002). [CrossRef]
  17. J. Landgraf, O. P. Hasekamp, R. van Deelen, and I. Aben, "Rotational Raman scattering of polarized light in the Earth's atmosphere: a vector radiative transfer model using the radiative transfer perturbation theory approach," J. Quant. Spectrosc. Radiat. Transfer 87, 399-433 (2004). [CrossRef]
  18. R. van Deelen, J. Landgraf, and I. Aben, "Multiple elastic and inelastic scattering in the Earth's atmosphere: a doubling-adding method to include rotational Raman scattering by air," J. Quant. Spectrosc. Radiat. Transfer 95, 309-330 (2005). [CrossRef]
  19. C. A. Gueymard, "The Sun's total and spectral irradiance for solar energy applications and solar radiation models," Sol. Energy 76, 423-453 (2004). [CrossRef]
  20. W. Gurlit, H. Bösch, H. Bovensmann, J. P. Burrows, A. Butz, C. Camy-Peyret, M. Dorf, K. Gerilowski, A. Lindner, S. Nol, U. Platt, F. Weidner, and K. Pfeilsticker, "The UV-A and visible solar irradiance spectrum: intercomparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements," Atmos. Chem. Phys. 5, 1879-1890 (2005). [CrossRef]
  21. M. Weber, "Solar activity during solar cycle 23 monitored by GOME, ESA WPP-161," in Proceedings of the European Symposium on Atmospheric Measurements from Space (ESAM'99), (European Space Research and Technology Centre, 1999), pp. 611-616.
  22. R. L. Kurucz, "The solar spectrum: atlases and line identifications," in Astronomical Society of the Pacific Conference Series81: Laboratory and Astronomical High Resolution Spectra, A. J. Sauval, R. Blomme, and N. Grevesse, eds. (1995), pp. 17-31.
  23. K. Chance, T. P. Kurosu, and C. E. Sioris, "Undersampling correction for array detector-based satellite spectrometers," Appl. Opt. 44, 1296-1304 (2005). [CrossRef] [PubMed]
  24. S. Slijkhuis, A. von Bargen, W. Thomas, and K. Chance, "Calculation of 'undersampling correction spectra' for DOAS spectral fitting," in Proceedings of the European Symposium on Atmospheric Measurements from Space (ESAM'99) (European Space Research and Technology Centre, 1999), pp. 563-569.
  25. B. van Diedenhoven, O. Hasekamp, and J. Landgraf, "Efficient vector radiative transfer calculations in vertically inhomogeneous cloudy atmospheres," Appl. Opt. 45, pp. 5993-6006 (2006). [CrossRef] [PubMed]
  26. K. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988).
  27. O. P. Hasekamp, J. Landgraf, and R. van Oss, "The need of polarization modeling for ozone profile retrieval from backscattered sunlight," J. Geophys. Res. 107, 4692, doi: (2002). [CrossRef]
  28. W. Menke, Geophysical Data Analysis: Discrete Inversion Theory (Academic, 1989).
  29. C. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).
  30. J. M. Krijger, I. Aben, and H. Schrijver, "Distinction between clouds and ice/snow covered surfaces in the identification of cloud-free observations using SCIAMACHY PMDs," Atmos. Chem. Phys. 5, 2729-2738 (2005). [CrossRef]
  31. A. Vasilkov, J. Joiner, J. Gleason, and P. K. Bhartia, "Retrieval of cloud pressure from rotational Raman scattering," Geophys. Res. Lett. 29, 1837-1841 (2002). [CrossRef]
  32. H. Bovensmann, J. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. Rozanov, K. Chance, and A. Goede, "SCIAMACHY: mission objectives and measurement modes," J. Atmos. Sci. 56, 127-150 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited