OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 2 — Jan. 10, 2007
  • pp: 262–272

Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics

Tatiana D. Khokhlova, Ivan M. Pelivanov, Victor V. Kozhushko, Alexei N. Zharinov, Vladimir S. Solomatin, and Alexander A. Karabutov  »View Author Affiliations


Applied Optics, Vol. 46, Issue 2, pp. 262-272 (2007)
http://dx.doi.org/10.1364/AO.46.000262


View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the major medical applications of optoacoustic (OA) tomography is in the diagnostics of early-stage breast cancer. A numerical approach was developed to characterize the following parameters of an OA imaging system: resolution, maximum depth at which the tumor can be detected, and image contrast. The parameters of the 64-element focused array transducer were obtained. The results of numerical modeling were compared with known analytical solutions and further validated by phantom experiments. The OA images of a 3   mm piece of bovine liver immersed in diluted milk at various depths were obtained. Based on the results of modeling, a signal filtering algorithm for OA image contrast enhancement has been proposed.

© 2007 Optical Society of America

OCIS Codes
(170.3830) Medical optics and biotechnology : Mammography
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 12, 2006
Revised Manuscript: July 12, 2006
Manuscript Accepted: August 19, 2006

Virtual Issues
Vol. 2, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Tatiana D. Khokhlova, Ivan M. Pelivanov, Victor V. Kozhushko, Alexei N. Zharinov, Vladimir S. Solomatin, and Alexander A. Karabutov, "Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics," Appl. Opt. 46, 262-272 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-2-262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Maslov, G. Stoica, and L. Wang, "In vivo dark-field reflection-mode photoacoustic microscopy," Opt. Lett. 30, 625-627 (2005). [CrossRef] [PubMed]
  2. R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004). [CrossRef] [PubMed]
  3. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003). [CrossRef] [PubMed]
  4. G. Ku, X. Wang, X. Xie, G. Stoica, and L. Wang, "Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography," Appl. Opt. 44, 770-775 (2005). [CrossRef] [PubMed]
  5. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, "Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis," Opt. Express 13, 89-95 (2005). [CrossRef] [PubMed]
  6. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003). [CrossRef] [PubMed]
  7. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005). [CrossRef] [PubMed]
  8. B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004). [CrossRef] [PubMed]
  9. G. Ku and L. V. Wang, "Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent," Opt. Lett. 30, 507-509 (2005). [CrossRef] [PubMed]
  10. V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).
  11. K. P. Kostli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, "Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction," Appl. Opt. 40, 3800-3809 (2001). [CrossRef]
  12. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  13. P. M. Webb, M. C. Cummings, C. J. Bain, and C. M. Furnival, "Changes in survival after breast cancer: improvements in diagnosis or treatment?" Breast 13, 7-14 (2004). [CrossRef] [PubMed]
  14. P. C. Beard and T. N. Mills, "2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom," in Biomedical Optoacoustics II, Proc. SPIE 4256, 34-42 (2001).
  15. R. Kolkman, E. Hondebrink, W. Steenbergen, and F. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003). [CrossRef]
  16. J. Hamilton, T. Buma, M. Spisar, and M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferro-electr. Freq. Control 47, 160-170 (2000). [CrossRef]
  17. G. Paltauf, "Dual-wavelength optoacoustic imaging," in Novel Optical Instrumentation for Biomedical Applications, A.-C.Boccara, ed., Proc. SPIE 5143, 41-49 (2003).
  18. R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography--technical consideration," Med. Phys. 26, 1832-1837 (1999). [CrossRef] [PubMed]
  19. R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using conventional linear transducer array," Med. Phys. 30, 856-860 (2003). [CrossRef] [PubMed]
  20. A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, "Two-Dimensional optoacoustic tomography transducer array and image reconstruction algorithm," in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S.L.Jacques, G.J.Mueller, A.Roggan, and D.H.Sliney, eds., Proc. SPIE 3601,256-267 (1999).
  21. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumours," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999). [CrossRef]
  22. V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004). [CrossRef] [PubMed]
  23. A. Oraevsky and A. Karabutov, "Ultimate sensitivity of time-resolved optoacoustic detection," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 228-239 (2000).
  24. A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003). [CrossRef]
  25. A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).
  26. V. N. Inkov, A. A. Karabutov, and I. M. Pelivanov, "A theoretical model of the linear thermo-optical response of an absorbing particle immersed in a liquid," Laser Phys. 11, 1283-1291 (2001).
  27. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).
  28. F. A. Duck, Physical Properties of Tissue. A Comprehensive Reference Book (Academic, 1990).
  29. V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, "Method for calibration of the wideband hydrophones in ultrasonic beams of finite amplitude," Moscow Univ. Phys. Bull. 39, 88-91 (1977).
  30. R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, and T. V. Malinsky, "Studies of acoustical and shock waves in the pulsed laser ablation of biotissue," Lasers Surg. Med. 13, 470-484 (1993). [CrossRef] [PubMed]
  31. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  32. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000). [PubMed]
  33. A. Rice and C. M. Quinn, "Angiogenesis, thrombospodin, and ductal carcinoma in situ of the breast," J. Clin. Pathol. 55, 569-574 (2002). [CrossRef] [PubMed]
  34. Q. Zhu, E. Conant, and B. Chance, "Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions," J. Biomed. Opt. 5, 229-236 (2000). [CrossRef] [PubMed]
  35. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).
  36. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004). [CrossRef] [PubMed]
  37. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002). [CrossRef] [PubMed]
  38. ANSI Standard Z136.3-2005, "Safe use of lasers in health care facilities."
  39. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  40. R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004). [CrossRef] [PubMed]
  41. Y. Xu and L.-V. Wang, "Signal processing in scanning thermoacoustic tomography in biological tissues," Med. Phys. 28, 1519-1524 (2001). [CrossRef] [PubMed]
  42. M. Xu and L.-V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E 71, 1-7 (2005). [CrossRef]
  43. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004). [CrossRef] [PubMed]
  44. A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, S. E. Skipetrov, "Determination of the optical characteristics of turbid media by the laser optoacoustic method," Quantum Electron. 29, 1054-1060 (1999). [CrossRef]
  45. I. Patrikeyev and A. A. Oraevsky, "Multiresolution reconstruction method to optoacoustic imaging," in Biomedical Optoacoustics IV, A.A.Oraevsky, ed., Proc. SPIE 4960, 99-105 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited