OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4266–4276

Prediction of the thermal radiative properties of an x-ray μ-tomographied porous silica glass

Benoit Rousseau, Domingos de Sousa Meneses, Patrick Echegut, Marco Di Michiel, and Jean-François Thovert  »View Author Affiliations

Applied Optics, Vol. 46, Issue 20, pp. 4266-4276 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1612 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Monte Carlo ray tracing procedure is proposed to simulate thermal optical processes in heterogeneous materials. It operates within a detailed 3D image of the material, and it can therefore be used to investigate the relationship between the microstructure, the constituent optical properties, and the macroscopic radiative behavior. The program is applied to porous silica glass. A sample was first characterized by 3D x-ray tomography; then, its normal spectral emittance was calculated and compared with the experimental spectrum measured independently by high-temperature infrared emittance spectroscopy. We conclude with a discussion of the light-scattering mechanisms occurring in the sample.

© 2007 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(300.6340) Spectroscopy : Spectroscopy, infrared
(350.5610) Other areas of optics : Radiation

ToC Category:

Original Manuscript: September 20, 2006
Revised Manuscript: January 2, 2007
Manuscript Accepted: March 22, 2007
Published: June 20, 2007

Benoit Rousseau, Domingos de Sousa Meneses, Patrick Echegut, Marco Di Michiel, and Jean-François Thovert, "Prediction of the thermal radiative properties of an x-ray μ-tomographied porous silica glass," Appl. Opt. 46, 4266-4276 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Siegel and M. Spuckler, "Analysis of thermal radiation effects on temperatures in turbine engine thermal barrier coatings," Mater. Sci. Engl. A 245, 150-159 (1998). [CrossRef]
  2. D. Damm and A. Fedorov, "Radiative heat transfer in SOFC materials and components," J. Power Sources 143, 158-165 (2004). [CrossRef]
  3. R. Mital, J. P. Gore, and R. Viskanta, "Measurements of radiative properties of cellular ceramics at high temperature," J. Thermophys. Heat Transfer 10, 33-38 (1996). [CrossRef]
  4. D. De Sousa Meneses, J. F. Brun, B. Rousseau, and P. Echegut, "Polar lattice dynamics of the MgAl2O4 spinel up to the liquid state," J. Phys. Condens. Matter 18, 5669-5686 (2006). [CrossRef]
  5. B. Rousseau, D. De Sousa Meneses, A. Blin, M. Chabin, P. Echegut, P. Odier, and F. Gervais, "High-temperature behavior of infrared conductivity of a Pr2NiO4+δ single crystal," Phys. Rev. B 72, 104114 (2005).
  6. D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, "Causal Voigt profile for modeling reflectivity spectra of glasses," J. Non-Cryst. Solids 351, 124-129 (2005). [CrossRef]
  7. O. Rozenbaum, D. De Sousa Meneses, P. Echegut, and P. Levitz, "Influence of the texture on the radiative properties of semitransparent materials. Comparison between model and experiment," High Temp.--High Pressures 32, 61-66 (2000). [CrossRef]
  8. M. Tancrez and J. Taine, "Direct identification of absorption and scattering coefficient and phase function of a porous medium by a Monte Carlo technique," Int. J. Heat Mass Transfer 47, 373-383 (2004). [CrossRef]
  9. R. Coquard and D. Baillis, "Radiative characteristics of opaque spherical particles beds: a new method of prediction," J. Thermophys. Heat Transfer 18, 178-186 (2004). [CrossRef]
  10. R. Coquard and D. Baillis, "Radiative characteristics of beds of spheres containing an absorbing and scattering medium," J. Thermophys. Heat Transfer 19, 226-234 (2005). [CrossRef]
  11. A. G. Fedorov and R. Viskanta, "Radiative transfer in semitransparent glass foam blancket," Phys. Chem. Glasses 41, 2769-2776 (2000).
  12. L. Dombrovsky, J. Randrianalisoa, D. Baillis, and L. Pilon, "Use of the Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles," Appl. Opt. 44, 7021-7031 (2005). [CrossRef] [PubMed]
  13. J. Randrianalisoa, D. Baillis, and L. Pilon, "Modeling radiation characteristics of semitransparent media containing bubbles or particles," J. Opt. Soc. Am. A 23, 1645-1656 (2006). [CrossRef]
  14. B. Zeghondy, E. Iaconna, and J. Taine, "Experimental and RDFI calculated radiative properties of a mullite foam," Int. J. Heat Mass Transfer 49, 3702-3707 (2006). [CrossRef]
  15. O. Rozenbaum, D. De Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut, "A spectroscopic method to measure the spectral emissiviy of semi-transparent materials up to high temperature," Rev. Sci. Instrum. 70, 4020-4025 (1999). [CrossRef]
  16. B. Rousseau, J. F. Brun, D. De Sousa Meneses, and P. Echegut, "Temperature measurement: Christiansen wavelength and blackbody reference," Int. J. Thermophys. 26, 1277-1286 (2005). [CrossRef]
  17. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, 2002), pp. 923-966.
  18. D. De Sousa Meneses, J. F. Brun, P. Echegut, and P. Simon, "Contribution of semiquantum dielectric function models to the analysis of infrared spectra," Appl. Spectrosc. 58, 969-974 (2004). [CrossRef]
  19. B. Rousseau, M. Di Michiel, A. Canizares, D. De Sousa Meneses, P. Echegut, and J.-F. Thovert, "Temperature effect (300-1500 K) on the infrared photon transport inside an x-ray microtomographic reconstructed porous silica glass," J. Quant. Spectrosc. Radiat. Transfer 104, 257-265 (2007). [CrossRef]
  20. V. G. Plotnichenko, V. O. Sokolov, and E. M. Dinaov, "Hydroxyls groups in high-purity glass," J. Non-Cryst. Solids 261, 186-194 (2000). [CrossRef]
  21. M. Di Michiel, J. Manuel Merino, D. Fernandez-Carreiras, T. Buslaps, V. Honkimäki, P. Falus, T. Martins, and O. Svensson, "Fast microtomography using high-energy synchrotron radiation," Rev. Sci. Instrum. 76, 043702 (2005). [CrossRef]
  22. J.-F. Thovert, F. Yousefian, P. Spanne, C. G. Jacquin, and P. M. Adler, "Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone," Phys. Rev. E 63, 061307 (2001). [CrossRef]
  23. P. Spanne, J. F. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, and P. M. Adler, "Synchrotron computed microtomography of porous media: topology and transports," Phys. Rev. Lett. 73, 2001-2004 (1994). [CrossRef] [PubMed]
  24. S. Torquato, Random Heterogeneous Material, Microstructure, and Macroscopic Properties (Springer-Verlag, 2002).
  25. B. P. Singh and M. Kaviany, "Independent theory versus direct simulation of radiation heat transfer in packed beds," Int. J. Heat Mass Transfer 34, 2869-2882 (1991). [CrossRef]
  26. B. P. Singh and M. Kaviany, "Modeling radiative heat transfer in packed beds," Int. J. Heat Mass Transfer 35, 1397-1405 (1992). [CrossRef]
  27. C. Argento and D. Bouvard, "A ray tracing method for evaluating the radiative heat transfer in porous media," Int. J. Heat Mass Transfer 39, 3175-3180 (1996). [CrossRef]
  28. B. T. Wong and M. P. Menguc, "Depolarization of radiation by non-absorbing foams," J. Quant. Spectrosc. Radiat. Transfer 73, 273-284 (2002). [CrossRef]
  29. K. Kamiuto, "Study of the scattering regime diagrams," J. Thermophys Heat Transfer 4, 432-443 (1990). [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited