OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4304–4319

Hybrid digital-optical correlation employing a chirp-encoded simulated-annealing-based rotation-invariant and distortion-tolerant filter

Soumika Munshi, V. K. Beri, and A. K. Gupta  »View Author Affiliations

Applied Optics, Vol. 46, Issue 20, pp. 4304-4319 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (3574 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The simulated annealing (SA) algorithm based on entropy optimization is a technique of synthesizing distortion-invariant matched filters capable of discriminating very similar images. The synthesis of rotation-invariant filters using modified SA-based filter equations and their tolerance to distortions are studied. The filters are trained with true class images rotated in-plane at 3° intervals between 0° and 360°. A total of seven filters are required over the whole range for both CCD or thermal images. Optical correlation in a hybrid digital-optical correlator results in an unwanted zero-order dc along with two first-order ( ± 1 ) correlation peaks. A chirp function multiplied with the filter separates out the three peaks to three different planes, and only one peak in focus is captured in a camera. The performance of the modified SA-based filter has been studied in comparison to the conventional SA filter as well as with other filters.

© 2007 Optical Society of America

OCIS Codes
(100.4550) Image processing : Correlators
(100.5760) Image processing : Rotation-invariant pattern recognition

ToC Category:
Image Processing

Original Manuscript: October 24, 2006
Revised Manuscript: February 20, 2007
Manuscript Accepted: March 1, 2007
Published: June 20, 2007

Soumika Munshi, V. K. Beri, and A. K. Gupta, "Hybrid digital-optical correlation employing a chirp-encoded simulated-annealing-based rotation-invariant and distortion-tolerant filter," Appl. Opt. 46, 4304-4319 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Shamir, "Adaptive pattern recognition correlators," Opt. Eng. 36, 2675-2689 (1997). [CrossRef]
  2. F. T. S. Yu and S. Jutamulia, eds., Optical Pattern Recognition (Cambridge U. Press, 1998).
  3. B. V. K. Vijaya Kumar, M. Savvides, C. Xie, K. Venkataramani, J. Thornton, and A. Mahalanobis, "Biometric verification with correlation filters," Appl. Opt. 43, 391-402 (2004). [CrossRef]
  4. B. V. K. Vijaya Kumar, A. Mahalanobis, and R. D. Juday, eds., Correlation Pattern Recognition (Cambridge U. Press, 2005). [CrossRef]
  5. B. V. K. Vijaya Kumar, "Minimum variance synthetic discriminant functions," J. Opt. Soc. Am. A 3, 1579-1584 (1986). [CrossRef]
  6. A. Mahalanobis, B. V. K. Vijaya Kumar, and D. Casasent, "Minimum average correlation energy filters," Appl. Opt. 26, 3633-3640 (1987). [CrossRef] [PubMed]
  7. A. Mahalanobis, D. W. Carlson, B. V. K. Vijaya Kumar, and S. R. F. Sims, "Distance classifier correlation filters," Proc. SPIE 2238, 2-13 (1994). [CrossRef]
  8. A. Mahalanobis and B. V. K. Vijaya Kumar, "Optimality of the maximum average correlation height filter for detection of targets in noise," Opt. Eng. 36, 2642-2648 (1997). [CrossRef]
  9. B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian, "Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response," IEEE Trans. Image Process. 9, 1025-1034 (2000). [CrossRef]
  10. S. M. A. Bhuiyan, M. S. Alam, and M. Alkanhal, "Automatic target recognition and tracking in FLIR imagery using extended maximum average correlation height filter and polynomial distance classifier correlation filter," Proc. SPIE 5807, 1-15 (2005). [CrossRef]
  11. S. Goyal, N. K. Nishchal, V. K. Beri, and A. K. Gupta, "Wavelet-modified maximum average correlation height filter for rotation invariance that uses chirp encoding in a hybrid digital-optical correlator," Appl. Opt. 45, 4850-4857 (2006). [CrossRef] [PubMed]
  12. T. C. Liang and Y. S. Cheng, "Rotational-invariant pattern recognition using circular harmonic and optical wavelet transform," Opt. Rev. 1, 198-201 (1994).
  13. U. Mahlab and J. Shamir, "Phase-only entropy-optimized filter generated by simulated annealing," Opt. Lett. 14, 1168-1170 (1989). [CrossRef] [PubMed]
  14. J. A. Butt, T. D. Wilkinson, and W. A. Crossland, "Optimization of a binary filter by direct binary search algorithm for rotation invariant JTC," Proc. SPIE 5202, 310-319 (2003). [CrossRef]
  15. M. Lu, S. Yin, C. Chen, F. T. S. Yu, T. D. Hudson, and D. K. McMillen, "Optimum synthesis of a bipolar composite reference function with a simulated annealing algorithm," Opt. Eng. 35, 2710-2720 (1996). [CrossRef]
  16. M. S. Kim, M. R. Feldman, and C. C. Guest, "Optimum encoding of binary phase-only filters with a simulated annealing algorithm," Opt. Lett. 14, 545-547 (1989). [CrossRef] [PubMed]
  17. M. S. Kim and C. G. Guest, "Simulated annealing algorithm for binary phase only filter in pattern classification," Appl. Opt. 29, 1203-1208 (1990). [CrossRef] [PubMed]
  18. C.-T. Li, M. Lu, S. Yin, F. T. S. Yu, T. D. Hudson, and D. K. McMillen, "Performance of quantized composite filters in a joint transform correlator," Opt. Eng. 35, 2218-2226 (1996). [CrossRef]
  19. C.-T. Li, J. Li, S. Yin, T. D. Hudson, and D. K. McMillen, "Synthesize multi-level composite filter for synthetic-aperture radar image identification," Opt. Commun. 146, 285-301 (1998). [CrossRef]
  20. D. Duarte and S. Yin, "Illumination-invariant face recognition using composite filters synthesized by simulated annealing," Opt. Eng. 39, 1252-1258 (2000). [CrossRef]
  21. M. Pohit and K. Singh, "Performance of a wavelet matched filter with optimized dilation designed using simulated annealing algorithm," Opt. Commun. 187, 337-346 (2001). [CrossRef]
  22. M. Jedynski and K. C. Macukow, "Wavelet transform for preprocessing in an optical correlator with a multilevel composite filter," Opt. Eng. 43, 1759-1766 (2004). [CrossRef]
  23. J. A. Butt and T. D. Wilkinson, "Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator," Opt. Commun. 262, 17-26 (2006). [CrossRef]
  24. A. Vander Lugt, "Signal detection by complex spatial filtering," IEEE Trans. Inf. Theory 10, 139-145 (1964). [CrossRef]
  25. R. Young, C. Chatwin, and B. Scott, "High speed hybrid optical/digital correlator system," Opt. Eng. 32, 2608-2615 (1993). [CrossRef]
  26. P. Birch, R. Young, F. Claret-Tournier, D. Budgett, and C. Chatwin, "Computer-generated complex filter for an all-optical and a digital-optical hybrid correlator," Opt. Eng. 41, 105-111 (2002). [CrossRef]
  27. G. J. McDonald, M. F. Lewis, and R. A. Wilson, "A high-speed readout scheme for fast optical correlation-based pattern recognition," Proc. SPIE 5616, 85-92 (2004). [CrossRef]
  28. S. Jutamulia and D. A. Gregory, "Soft blocking of the dc term in Fourier optical systems," Opt. Eng. 7, 49-51 (1998). [CrossRef]
  29. E. H. Horache and M. S. Alam, "Nonzero-order fringe-adjusted joint transform correlation using binary phase mask," Proc. SPIE 5807, 341-348 (2005). [CrossRef]
  30. Q. Tang and B. Javidi, "Technique for reducing the redundant and self-correlation terms in joint transform correlators," Appl. Opt. 32, 1911-1918 (1993). [CrossRef] [PubMed]
  31. B. S. Lowans and M. F. Lewis, "Hybrid correlator employing a chirp-encoded binary phase-only filter," Opt. Lett. 25, 1195-1197 (2000). [CrossRef]
  32. J. A. Davis, K. O. Valadez, and D. M. Cottrell, "Encoding amplitude and phase information onto a binary phase-only spatial light modulator," Appl. Opt. 42, 2003-2008 (2003). [CrossRef] [PubMed]
  33. B. V. K. Vijaya Kumar and L. Hassebrook, "Performance measures for correlation filters," Appl. Opt. 29, 2997-3006 (1990). [CrossRef] [PubMed]
  34. B. Javidi and J. L. Horner, eds., Optical Information Processing (Academic, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited