OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4357–4370

Thermo-optical modeling of an intrinsically heated polymer fiber Bragg grating

Kyoung Joon Kim, Avram Bar-Cohen, and Bongtae Han  »View Author Affiliations


Applied Optics, Vol. 46, Issue 20, pp. 4357-4370 (2007)
http://dx.doi.org/10.1364/AO.46.004357


View Full Text Article

Enhanced HTML    Acrobat PDF (2409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fully concatenated thermo-optical model is presented to predict the thermo-optical behavior of an intrinsically heated polymer fiber Bragg grating (PFBG). Coupled-mode theory and heat-conduction theory are first used to determine the axial heat generation and temperature distribution of a PFBG and the transfer matrix method (TMM) is subsequently employed to predict its thermo-optical behavior. The validity of the TMM is corroborated experimentally using an externally heated glass fiber Bragg grating (FBG) with an axially decaying temperature field. The verified model is utilized to investigate the thermo-optical behavior of a poly(methyl methacrylate) (PMMA) FBG. The counteracting thermally driven changes in the refractive index and the grating pitch, respectively, are found to be of comparable magnitude and to result in very modest net shifts in the Bragg wavelengths despite the considerable temperature changes induced by the absorption of the incident light.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(250.5460) Optoelectronics : Polymer waveguides

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 6, 2006
Revised Manuscript: February 4, 2007
Manuscript Accepted: February 13, 2007
Published: June 20, 2007

Citation
Kyoung Joon Kim, Avram Bar-Cohen, and Bongtae Han, "Thermo-optical modeling of an intrinsically heated polymer fiber Bragg grating," Appl. Opt. 46, 4357-4370 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-20-4357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Eldada and L. W. Shacklette, 'Advances in polymer integrated optics,' IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000). [CrossRef]
  2. M. J. Weber, Handbook of Laser Science and Technology Supplement 2: Optical Materials (CRC, 1995).
  3. H. Zou, K. W. Beeson, and L. W. Shacklette, 'Tunable planar polymer Bragg gratings having exceptionally low polarization sensitivity,' J. Lightwave Technol. 21, 1083-1088 (2003). [CrossRef]
  4. J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, 'Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,' Appl. Phys. Lett. 82, 3823-3825 (2003). [CrossRef]
  5. A. Sato, M. Scepanovic, and R. K. Kostuk, 'Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,' Appl. Opt. 42, 778-784 (2003). [CrossRef] [PubMed]
  6. S. Tang, Y. Tang, J. Colegrove, and D. M. Craig, 'Fast electro-optic Bragg grating couplers for on-chip reconfigurable optical waveguide interconnects,' IEEE Photon. Technol. Lett. 16, 1385-1387 (2004). [CrossRef]
  7. T. Kaino, 'Preparation of plastic optical fibers for near-IR region transmission,' J. Polym. Sci. Part A: Polym. Chem. 25, 37-46 (1987). [CrossRef]
  8. M. Zhou, 'Low-loss polymeric materials for passive waveguide components in fiber optical communication,' Opt. Eng. 41, 1631-1643 (2002). [CrossRef]
  9. C.-L. Chen, Elements of Optoelectronics and Fiber Optics (Irwin, 1996).
  10. Product Specification Sheets of Mitsubishi DFB Laser Diodes,http://www.mitsubishichips.com/Global/common/cfm/eProfile.cfm?FOLDER=/product/ opt/laserdiode/optcomld/dfbld (2005).
  11. Product Catalogs of Denselight LEDs,http://www.denselight.com/products%20SLED%20modules%20&%20box%20catalog.htm (2005).
  12. T. Erdogan, 'Fiber grating spectra,' J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  13. H. Kogelnik, 'Coupled-wave theory for thick hologram gratings,' Bell Syst. Tech. J. 48, 2909-2947 (1969).
  14. H. Kogelnik and C. V. Shank, 'Coupled-wave theory of distributed feedback lasers,' J. Appl. Phys. 43, 2327-2335 (1972). [CrossRef]
  15. A. Yariv, 'Coupled-mode theory for guided-wave optics,' IEEE J. Quantum Electron. 9, 919-933 (1973). [CrossRef]
  16. D. G. Zill and M. R. Cullen, Advanced Engineering Mathematics (PWS-KENT, 1992).
  17. K. J. Kim, 'Thermo-structural influences on optical characteristics of polymer Bragg gratings,' Ph.D. dissertation (University of Maryland, 2006).
  18. A. Othonos and K. Kalli, Fiber Bragg Gratings--Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  19. M. N. Ozisik, Heat Conduction (Wiley, 1980).
  20. A. D. Kraus and A. Bar-Cohen, Thermal Analysis and Control of Electronic Equipment (Hemisphere, 1983).
  21. S. Moaveni, Finite Element Analysis--Theory and Application with ANSYS (Prentice-Hall, 2002).
  22. M. Yamada and K. Sakuda, 'Analysis of almost-periodic distributed slab waveguides via a fundamental matrix approach,' Appl. Opt. 26, 3474-3478 (1987). [CrossRef] [PubMed]
  23. J. E. Sipe, L. Poladian, and C. M. D. Sterke, 'Propagation through nonuniform grating structures,' J. Opt. Soc. Am. A 11, 1307-1320 (1994). [CrossRef]
  24. L. A. Weller-Brophy and D. G. Hall, 'Analysis of waveguide gratings: application of Rouard's method,' J. Opt. Soc. Am. A 2, 863-871 (1985). [CrossRef]
  25. Product Specification Document (Avensys Inc., 2005).
  26. Product Specification Document (Corning Inc., 2005).
  27. H. Y. Liu, G. D. Peng, and P. L. Chu, 'Thermal stability of gratings in PMMA and CYTOP polymer fibers,' Opt. Commun. 24, 151-156 (2002).
  28. G. D. Peng and P. L. Chu, 'Polymer optical fiber photosensitivities and highly tunable fiber gratings,' Fiber Integr. Opt. 19, 277-293 (2000). [CrossRef]
  29. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, 'Highly tunable Bragg gratings in single-mode polymer optical fibers,' IEEE Photon. Technol. Lett. 11, 352-354 (1999). [CrossRef]
  30. A. Fender, M. Silva-López, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, and I. Bennion, 'Strain and temperature sensitivity of a single-mode polymer optical fiber,' Opt. Lett. 30, 3129-3131 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited