OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4371–4375

Piezoelectric optical fiber stretcher for application in an atmospheric optical turbulence sensor

Haiping Mei, Baosheng Li, Honglian Huang, and Ruizhong Rao  »View Author Affiliations

Applied Optics, Vol. 46, Issue 20, pp. 4371-4375 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A piezoelectric optical fiber stretcher has been introduced for working point controlling and low-frequency noise suppression of a fiber-optic atmospheric turbulence sensor. It is actuated by a piezoelectric ceramic stack. The rational structure allows the fiber to extend only along the axial direction, which minimizes the nonlinear birefringence effects for the optical phase shift. What is believed to be a novel method has been proposed to measure its phase-shift coefficient. With the use of this device, the fiber-optic atmospheric turbulence sensor has been tested for the air refractive index measurement.

© 2007 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 6, 2006
Revised Manuscript: October 23, 2006
Manuscript Accepted: October 27, 2006
Published: June 20, 2007

Haiping Mei, Baosheng Li, Honglian Huang, and Ruizhong Rao, "Piezoelectric optical fiber stretcher for application in an atmospheric optical turbulence sensor," Appl. Opt. 46, 4371-4375 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Martin and S. M. Flatte, 'Intensity images and statistics from numerical simulation of wave propagation in 3D random media,' Appl. Opt. 27, 2111-2125 (1988). [CrossRef] [PubMed]
  2. D. L. Walters, 'Measurements of optical turbulence with higher-order structure functions,' Appl. Opt. 34, 1591-1597 (1995). [CrossRef] [PubMed]
  3. P. Pant, C. S. Stalin, and R. Sagar, 'Microthermal measurements of surface layer seeing at Devasthal site,' Astron. Astrophys. Suppl. Ser. 136, 19-25 (1999). [CrossRef]
  4. M. D. Mermelstein, 'Fiber-optic atmospheric turbulence sensor,' Opt. Lett. 20, 1922-1923 (1995). [CrossRef] [PubMed]
  5. H. P. Mei and R. Z. Rao, 'An optical fiber interferomtetric system for noncontact measurement of atmospheric optical turbulence,' in Optical Test and Measurement Technology and Equipment,Proc. SPIE 6150, 61500L (2005).
  6. J. D. C. Jones, 'Engineering applications of optical fiber interferometers,' in Interferometric Fiber Sensing,Proc. SPIE 2341, 222-238 (1994). [CrossRef]
  7. A. D. Kersey and T. A. Berkoff, 'Passive laser phase noise suppression technique for fiber interferometers,' in Fiber Optic and Laser Sensors VIII,Proc. SPIE 1367, 310-318 (1990). [CrossRef]
  8. D. A. Jackson, A. Dandridge, and S. K. Sheem, 'Measurement of small phase shifts using a single-mode optical-fiber interferometer,' Opt. Lett. 5, 139-141 (1980). [CrossRef] [PubMed]
  9. A. Dandridge and A. B. Tveten, 'Phase compensation in interferometric fiber-optic sensors,' Opt. Lett. 7, 279-281 (1982). [CrossRef] [PubMed]
  10. M. Ni, R. H. Zhang, Y. M. Hu, and Z. Meng, 'Implement of controlling the working point of an interferometric fiber-optic hydrophone by closed loop and pick-up of the signal,' Appl. Acoust. 20, 13-18 (2001).
  11. D. Laurent and R. Francois, 'Kilometric optical fiber interferometer,' Opt. Express 9, 267-271 (2001). [CrossRef]
  12. P. Y. Chien and C. L. Pan, 'Scale-factor-stabilized fiber-optic gyroscope by deep phase modulation,' Opt. Lett. 17, 450-452 (1992). [CrossRef] [PubMed]
  13. A. H. David, H. Conrad, C. Robert, and V. Dan, 'Kilohertz scanning all-fiber delay line using piezoelectric actuation,' in Fiber Optic Sensor Technology and Applications III,Proc. SPIE 5589, 99-106 (2004). [CrossRef]
  14. G. R. Li, D. R. Chen, and Q. R. Yin, 'Displacement characterization of the PZT-based monolithic multilayer piezoelectric actuators,' J. Inorg. Mater. 14, 418-424 (1999).
  15. C. Chen, D. G. Li, Z. S. Liu, J. Peng, and W. Chen, 'Measurement of the phase-shift coefficient of piezoelectrical phase modulator by use of fiber interferometer,' J. Naval Univ. Eng. 13, 68-70 (2001).
  16. T. L. Yu, Y. Liu, A. Wang, and B. S. Li, 'Measurement of the phase-shift coefficient of piezoelectrical phase modulator,' Optoelectron. Technol. Info. 17, 80-82 (2004).
  17. A. D. Kersey, 'Novel passive phase noise canceling technique for interferometeric fiber optic sensors,' Electron. Lett. 26, 640-641 (1990). [CrossRef]
  18. M. Hirokazu and T. Koichi, 'Effects of the atmospheric phase fluctuation on long-distance measurement,' Appl. Opt. 23, 3388-3394 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited