OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4397–4406

Optical and physical properties of solgel-derived GeO2:SiO2 films in photonic applications

Charles K. F. Ho, Rajni, H. S. Djie, Kantisara Pita, Nam Quoc Ngo, and T. Osipowicz  »View Author Affiliations

Applied Optics, Vol. 46, Issue 20, pp. 4397-4406 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The functionality of optical components relies heavily on the composition-dependent properties of germanosilicate materials, which include the refractive index, photosensitivity, and microstructural properties. Recent studies and parallel developments are presented of germanosilicate films with composition x of Ge content (i.e., x GeO 2 : ( 1 x ) SiO 2 ) that were synthesized by the solgel process for various integrated photonic applications undertaken. The following novel aspects are discussed with respect to the effect of composition of the glassy films ( 0.05 x 0.40 ) : determination of spectral optical properties, UV imprinting of optical waveguides with relatively large index change ( Δ n ) , and quantum-well intermixing enhancement observed in InGaAs ( P ) / InP quantum-well optical devices. The implications of the results are discussed.

© 2007 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3130) Integrated optics : Integrated optics materials
(130.5990) Integrated optics : Semiconductors
(160.6060) Materials : Solgel
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Integrated Optics

Original Manuscript: December 7, 2006
Manuscript Accepted: February 13, 2007
Published: June 20, 2007

Charles K. F. Ho, Rajni Pal, H. S. Djie, Kantisara Pita, Nam Quoc Ngo, and T. Osipowicz, "Optical and physical properties of solgel-derived GeO2:SiO2 films in photonic applications," Appl. Opt. 46, 4397-4406 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997). [CrossRef]
  2. Rajni, K. Pita, S. F. Yu, S. C. Tjin, and C. H. Kam, "Fabrication of inorganic GeO2:SiO2 channel waveguides by ultraviolet imprinting technique," Appl. Phys. Lett. 89, 071105 (2006).
  3. R. R. A. Syms and J. R. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).
  4. F. Ladouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices, Optical and Quantum Electronics Series (Chapman & Hall, 1996).
  5. C. R. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic, 2003).
  6. K. Susa, I. Matsuyama, S. Satoh, and T. Suganuma, "Sol-gel derived Ge-doped silica glass for optical fiber application. I. Preparation of gel and glass and their characterization," J. Non-Cryst. Solids 119, 21-28 (1990). [CrossRef]
  7. Y. Y. Huang, A. Sarkar, and P. C. Schultz, "Relationship between composition, density and refractive index for germania silica glasses," J. Non-Cryst. Solids 27, 29-37 (1978). [CrossRef]
  8. D.-G. Chen, B. G. Potter, and J. H. Simmons, "GeO2-SiO2 thin films for planar waveguide applications," J. Non-Cryst. Solids 178, 135-147 (1994). [CrossRef]
  9. R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, "Ultralow loss high delta silica germania planar waveguides," J. Electrochem. Soc. 151, G541-G547 (2004). [CrossRef]
  10. A. B. Djurisic, Y. Chan, and E. H. Li, "Progress in the room-temperature optical functions of semiconductors," Mater. Sci. Eng. , R. 38, 237-293 (2002). [CrossRef]
  11. C. K. F. Ho, K. Pita, N. Q. Ngo, and C. H. Kam, "Optical functions of (x)GeO2:(1 − x)SiO22 films determined by multisample and multiangle spectroscopic ellipsometry," Opt. Express 13, 1049-1054 (2005). [CrossRef] [PubMed]
  12. M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, "Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique," Electron. Lett. 38, 1673-1675 (2002). [CrossRef]
  13. J. Gehler and F. Knappe, "Crosstalk reduction of arrayed waveguide gratings by UV trimming of individual waveguides without H2-loading," in Optical Fiber Communication Conference, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America , 2000), paper WM9.
  14. K. Takada and M. Abe, "UV trimming of AWG devices," in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Vol. 93 in OSA Trends in Optics and Photonics Series (Optical Society of America , 2003), pp. 175-177.
  15. D. A. Zauner, J. Hubner, K. J. Malone, and M. Kristensen, "UV trimming of arrayed-waveguide grating wavelength division demultiplexers," Electron. Lett. 34, 780-781 (1998). [CrossRef]
  16. Q. Y. Zhang, K. Pita, C. K. F. Ho, N. Q. Ngo, L. P. Zuo, and S. Takahashi, "Low optical loss germanosilicate planar waveguides by low-pressure inductively coupled plasma-enhanced chemical vapor deposition," Chem. Phys. Lett. 368, 183-188 (2003). [CrossRef]
  17. M. Takahashi, A. Sakoh, Y. Tokuda, T. Yoko, J. Nishii, H. Nishiyama, and I. Miyamoto, "Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses," J. Non-Cryst. Solids 345-346, 323-327 (2004). [CrossRef]
  18. M. Takahashi, K. Ichii, Y. Tokuda, T. Uchino, T. Yoko, J. Nishii, and T. Fujiwara, "Photochemical reaction of divalent-germanium center in germanosilicate glasses under intense near-ultraviolet laser excitation: Origin of 5.7 eV band and site selective excitation of divalent-germanium center," J. Appl. Phys. 92, 3442-3446 (2002). [CrossRef]
  19. J. Nishii, "Permanent index changes in Ge-SiO2 glasses by excimer laser irradiation," Mater. Sci. Eng. B 54, 1-10 (1998). [CrossRef]
  20. S. Agnello, R. Boscaino, F. La Mattina, S. Grandi, and A. Magistris, "Hydrogen-related paramagnetic centers in Ge-doped sol-gel silica induced by γ-ray irradiation," J. Sol-Gel Sci. Technol. 37, 63-68 (2006). [CrossRef]
  21. J. Nishii, H. Yamanaka, H. Hosono, and H. Kawazoe, "Characteristics of 5-eV absorption band in sputter deposited GeO2-SiO2 thin glass films," Appl. Phys. Lett. 64, 282-284 (1994). [CrossRef]
  22. H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, "Nature and origin of the 5-eV band in GeO2:SiO2 glasses," Phys. Rev. B 46, 11445-11451 (1992). [CrossRef]
  23. K. D. Simmons, G. I. Stegeman, B. G. Potter, Jr., and J. H. Simmons, "Photosensitivity in germano-silicate sol-gel thin films," J. Non-Cryst. Solids 179, 254-259 (1994). [CrossRef]
  24. M. Fokine and W. Margulis, "Large increase in photosensitivity through massive hydroxyl formation," Opt. Lett. 25, 302-304 (2000). [CrossRef]
  25. M. G. Sceats, G. R. Atkins, and S. B. Poole, "Photolytic index changes in optical fibers," Annu. Rev. Mater. Sci. 23, 381-410 (1993). [CrossRef]
  26. A. Sakoh, M. Takahashi, T. Yoko, J. Nishii, H. Nishiyama, and I. Miyamoto, "Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses," Opt. Express 11, 2679-2688 (2003). [CrossRef] [PubMed]
  27. Rajni, K. Pita, S. C. Tjin, S. F. Yu, and C. H. Kam, "Enhanced photosensitivity in sol-gel derived 20GeO2:80SiO2 thin films," Appl. Phys. A 82, 535-541 (2006). [CrossRef]
  28. J. H. Marsh, "Quantum well intermixing," Semicond. Sci. Technol. 8, 1136-1155 (1993). [CrossRef]
  29. E. H. Li, ed., Semiconductor Quantum Wells Intermixing, Optoelectronic Properties of Semiconductors and Superlattices, Vol. 8 (Gordon & Breach, 2000), p. 695.
  30. A. M. Kan'an, P. LiKamWa, Mitra-Dutta, and J. Pamulapati, "Area-selective disordering of multiple quantum well structures and its applications to all-optical devices," J. Appl. Phys. 80, 3179-3183 (1996). [CrossRef]
  31. A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, "Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures," J. Vac. Sci. Technol. B 15, 142-153 (1997). [CrossRef]
  32. P. Cusumano, B. S. Ooi, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, B. Voegele, and M. J. Rose, "Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer," J. Appl. Phys. 81, 2445-2447 (1997). [CrossRef]
  33. P. N. K. Deenapanray, B. Gong, R. N. Lamb, A. Martin, L. Fu, H. H. Tan, and C. Jagadish, "Impurity-free disordering mechanisms in GaAs-based structures using doped spin-on silica layers," Appl. Phys. Lett. 80, 4351-4353 (2002). [CrossRef]
  34. H. S. Djie, C. K. F. Ho, T. Mei, and B. S. Ooi, "Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure," Appl. Phys. Lett. 86, 081106 (2005). [CrossRef]
  35. R. R. A. Syms, "Stress in thick sol-gel phosphosilicate glass films formed on Si substrates," J. Non-Cryst. Solids 167, 16-20 (1994). [CrossRef]
  36. R. R. A. Syms and A. S. Holmes, "Deposition of thick silica-titania sol-gel films on Si substrates," J. Non-Cryst. Solids 170, 223-233 (1994). [CrossRef]
  37. H. S. Lim, V. Aimez, B. S. Ooi, J. Beauvais, and J. Beerens, "A novel fabrication technique for multiple-wavelength photonic-integrated devices in InGaAs-InGaAsP laser heterostructures," Photon. Technol. Lett. 14, 594-596 (2002). [CrossRef]
  38. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multisample, multiwavelength, multiangle investigation," J. Appl. Phys. 83, 3323-3336 (1998). [CrossRef]
  39. C. M. Herzinger, B. Johs, W. A. McGahan, and W. Paulson, "A multisample, multiwavelength, multiangle investigation of the interface layer between silicon and thermally grown silicon dioxide," Thin Solid Films 313, 281-285 (1998). [CrossRef]
  40. H. Scholze, Glass: Nature, Structure, and Properties (Springer-Verlag, 1991).
  41. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon Press, 1964).
  42. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tunnermann, "Discrete diffraction in two-dimensional arrays of coupled waveguides in silica," Opt. Lett. 29, 468-470 (2004). [CrossRef] [PubMed]
  43. J. Zhou, N. Q. Ngo, K. Pita, C. H. Kam, P. V. Ramana, and M. K. Iyer, "Determining the minimum number of arrayed waveguides and the optimal orientation angle of slab for the design of arrayed waveguide gratings," Opt. Commun. 226, 181-189 (2003). [CrossRef]
  44. Q. Y. Zhang, K. Pita, S. C. Tjin, C. H. Kam, L. P. Zuo, and S. Takahashi, "Laser-induced ultraviolet absorption and refractive index changes in Ge-B-SiO2 planar waveguides by inductively coupled plasma-enhanced chemical vapor deposition," Chem. Phys. Lett. 379, 534-538 (2003). [CrossRef]
  45. M. Essid, J. Albert, J. L. Brebner, and K. Awazu, "Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms," J. Non-Cryst. Solids 246, 39-45 (1999). [CrossRef]
  46. C. K. F. Ho, H. S. Djie, K. Pita, N. Q. Ngo, and C. H. Kam, "Sintering and porosity control of (x)GeO2:(1 − x)SiO2 sol-gel derived films for optoelectronic applications," Electrochem. Solid-State Lett. 7, 96-98 (2004). [CrossRef]
  47. S. Doshi, P. N. K. Deenapanray, H. H. Tan, and C. Jagadish, "Towards a better understanding of the operative mechanisms underlying impurity-free disordering of GaAs: Effect of stress," J. Vac. Sci. Technol. B 21, 198-203 (2003). [CrossRef]
  48. H. S. Djie, T. Mei, J. Arokiaraj, and D. Nie, "Single step quantum well intermixing with multiple band gap control for III-V compound semiconductors," J. Appl. Phys. 96, 3282-3285 (2004). [CrossRef]
  49. H. S. Djie, S. L. Ng, O. Gunawan, P. Dowd, V. Aimez, J. Beauvais, and J. Beerens, "Analysis of strain-induced polarisation-insensitive integrated waveguides fabricated using ion-implantation-induced intermixing," IEE Proc. Optoelectron. 149, 138-144 (2002). [CrossRef]
  50. L. H. Lee, B. S. Ooi, Y. Lam, Y. C. Chan, and C. H. Kam, "Quantum well intermixing in GaAs-AlGaAs laser structure using sol-gel SiO2 dielectric cap," Proc. SPIE 3547, 319-323 (1998). [CrossRef]
  51. S. S. Rao, W. P. Gillin, and K. P. Homewood, "Interdiffusion of the group-III sublattice in In-Ga-As-P/In-Ga-As-P and In-Ga-As/In-Ga-As heterostructures," Phys. Rev. B 50, 8071-8073 (1994). [CrossRef]
  52. O. M. Khreis, W. P. Gillin, and K. P. Homewood, "Interdiffusion: a probe of vacancy diffusion in III-V materials," Phys. Rev. B 55, 15813-15818 (1997). [CrossRef]
  53. P. N. K. Deenapanray, A. Martin, and C. Jagadish, "Defect engineering in annealed n-type GaAs epilayers using SiO2/Si3N4 stacking layers," Appl. Phys. Lett. 79, 2561-2563 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited