OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4413–4422

Adaptive optics performance model for optical interferometry

D. Mozurkewich, S. R. Restaino, J. T. Armstrong, and G. C. Gilbreath  »View Author Affiliations


Applied Optics, Vol. 46, Issue 20, pp. 4413-4422 (2007)
http://dx.doi.org/10.1364/AO.46.004413


View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical interferometry community has discussed the possibility of using adaptive optics (AO) on apertures much larger than the atmospheric coherence length in order to increase the sensitivity of an interferometer, although few quantitative models have been investigated. The aim of this paper is to develop an analytic model of an AO-equipped interferometer and to use it to quantify, in relative terms, the gains that may be achieved over an interferometer equipped only with tip–tilt correction. Functional forms are derived for wavefront errors as a function of spatial and temporal coherence scales and flux and applied to the AO and tip–tilt cases. In both cases, the AO and fringe detection systems operate in the same spectral region, with the sharing ratio and subaperture size as adjustable parameters, and with the interferometer beams assumed to be spatially filtered after wavefront correction. It is concluded that the use of AO improves the performance of the interferometer in three ways. First, at the optimal aperture size for a tip–tilt system, the AO system is as much as 50 % more sensitive. Second, the sensitivity of the AO system continues to improve with increasing aperture size. And third, the signal-to-noise ratio of low-visibility fringes in the bright-star limit is significantly improved over the tip–tilt case.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(110.5100) Imaging systems : Phased-array imaging systems
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Interferometry

History
Original Manuscript: October 12, 2006
Revised Manuscript: February 28, 2007
Manuscript Accepted: March 2, 2007
Published: June 20, 2007

Citation
D. Mozurkewich, S. R. Restaino, J. T. Armstrong, and G. C. Gilbreath, "Adaptive optics performance model for optical interferometry," Appl. Opt. 46, 4413-4422 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-20-4413

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited