OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4455–4464

Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces

Svetlana Y. Kotchenova and Eric F. Vermote  »View Author Affiliations


Applied Optics, Vol. 46, Issue 20, pp. 4455-4464 (2007)
http://dx.doi.org/10.1364/AO.46.004455


View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.

© 2007 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.4210) Scattering : Multiple scattering

ToC Category:
Scattering

History
Original Manuscript: December 20, 2006
Revised Manuscript: March 2, 2007
Manuscript Accepted: March 5, 2007
Published: June 20, 2007

Citation
Svetlana Y. Kotchenova and Eric F. Vermote, "Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces," Appl. Opt. 46, 4455-4464 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-20-4455


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. Klemm, "Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance," Appl. Opt. 45, 6762-6774 (2006). [CrossRef] [PubMed]
  2. E. F. Vermote, N. Z. El Saleous, and C. O. Justice, "Atmospheric correction of MODIS data in the visible to middle infrared: first results," Remote Sens. Environ. 83, 97-111 (2002). [CrossRef]
  3. J. L. Deuzé, M. Herman, and R. Santer, "Fourier series expansion of the transfer equation in the atmosphere-ocean system," J. Quant. Spectrosc. Radiat. Transfer 41, 483-494 (1989). [CrossRef]
  4. K.-N. Liou, An Introduction to Atmospheric Radiation (Academic, 1980).
  5. E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, S. Y. Kotchenova, and T. Miura, Second Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User Guide Version 3 (November, 2006), http://www.6s.ltdri.org.
  6. F. F. Evans and G. L. Stephens, "A new polarized atmospheric radiative transfer model," J. Quant. Spectrosc. Radiat. Transfer 5, 413-423 (1991). [CrossRef]
  7. J. V. Dave and J. Gazdag, "A modified Fourier transform method for multiple scattering calculation in a plane-parallel Mie atmosphere," Appl. Opt. 9, 1457-1465 (1970). [CrossRef] [PubMed]
  8. J. V. Dave, "Coefficients of the Legendre and Fourier series for the scattering functions of spherical particles," Appl. Opt. 9, 1888-1896 (1970). [PubMed]
  9. A. I. Lyapustin, "Radiative transfer code SHARM for atmospheric and terrestrial application," Appl. Opt. 44, 7764-7772 (2005). [CrossRef] [PubMed]
  10. M. I. Mishchenko, A. A. Lacis, and L. D. Travis, "Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres," J. Quant. Spectrosc. Radiat. Transfer 51, 491-510 (1994). [CrossRef]
  11. A. A. Lacis, J. Chowdhary, M. I. Mishchenko, and B. Cairns, "Modeling errors in diffuse-sky radiation: Vector vs. scalar treatment," J. Geophys. Res. 25, 135-138 (1998).
  12. M. I. Mishchenko and L. D. Travis, "Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight," J. Geophys. Res. 102, 16989-17013 (1997). [CrossRef]
  13. A. Lyapustin, "Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study," Appl. Opt. 41, 5607-5615 (2002). [CrossRef] [PubMed]
  14. H. Rahman, B. Pinty, and M. M. Verstraete, "Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer Data," J. Geophys. Res. 98, 20791-20801 (1993). [CrossRef]
  15. K. L. Coulson, J. V. Dave, and Z. Sekera, Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering (University of California Press, 1960).
  16. F.-M. Bréon, "Reflectance of broken cloud fields: simulation and parameterization," J. Atmos. Sci. 49, 1221-1232 (1992). [CrossRef]
  17. J.-L. Roujean, M. Leroy, and P. Y. Deschamps, "A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data," J. Geophys. Res. 97, 20455-20468 (1992).
  18. O. Engelsen, B. Pinty, M. M. Verstraete, and J. V. Martonchik, Parametric Bidirectional Reflectance Factor Models: Evaluation, Improvements and Applications, Eur. Rep. 16426 EN (Space Appl. Inst., Ispra, Italy, 1996).
  19. W. Lucht, C. B. Schaaf, and A. H. Strahler, "An algorithm for the retrieval of albedo from space using semiempirical BRDF models," IEEE Trans. Geosci. Remote Sens. 38, 977-998 (2000). [CrossRef]
  20. C. B. Schaaf, F. Gao, A. H. Strahler, W. Lucht, X. Li, T. Tsang, N. C. Strugnell, X. Zhang, Y. Jin, J.-P. Muller, P. Lewis, M. Bamsley, P. Hobson, M. Disney, G. Roberts, M. Dunderdale, C. Doll, R. P. d'Entremont, B. Hu, S. Liang, J. L. Privette, and D. Roy, "First operational BRDF, albedo nadir reflectance products from MODIS," Remote Sens. Environ. 83, 135-148 (2002). [CrossRef]
  21. D. S. Kimes, W. W. Newcomb, R. F. Nelson, and J. B. Schutt, "Directional reflectance distributions of a hardwood and a pine forest canopy," IEEE Trans. Geosci. Remote Sens. 24, 281-293 (1986).
  22. P. Koepke, "Effective reflectance of oceanic whitecaps," Appl. Opt. 23, 1816-1824 (1984). [CrossRef] [PubMed]
  23. C. Cox and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun's glitter," J. Opt. Soc. Am. 44, 838-850 (1954). [CrossRef]
  24. C. Cox and W. Munk, "Statistics of the sea surface derived from sun glitter," J. Mar. Res. 13, 198-227 (1954).
  25. C. Cox and W. Munk, "Some problems in optical oceanography," J. Mar. Res. 14, 63-78 (1955).
  26. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).
  27. E. C. Monahan and I. O'Muircheartaigh, "Optimal power-law description of oceanic whitecap dependence on wind speed," J. Phys. Oceanogr. 10, 2094-2099 (1980). [CrossRef]
  28. A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I Waters)," J. Geophys. Res. 93, 10479-10768 (1988).
  29. L. D. Talley and G. C. Johnson, "Deep, zonal subequatorial currents," Science 263, 1125-1128 (1994). [CrossRef] [PubMed]
  30. C. C. Trees, D. K. Clark, R. R. Bidigare, M. E. Ondrusek, and J. L. Mueller, "Accessory pigments versus chlorophyll a concentrations within the Euphotic Zone: A ubiquitous relationship," Limnol. Oceanogr. 45, 1130-1143 (2000). [CrossRef]
  31. Salt Concentration, www.nas.nasa.gov/News/Archive/2006/08-30-06.html.
  32. E. Vermote and D. Tanré, "Analytical expressions for radiative properties of planar Rayleigh scattering media, including polarization contributions," J. Quant. Spectrosc. Radiat. Transfer 47, 305-314 (1992). [CrossRef]
  33. B. M. Herman, T. R. Caudill, D. E. Flittner, K. J. Thome, and A. Ben-David, "Comparison of the Gauss-Seidel spherical polarized radiative transfer code with other radiative transfer codes," Appl. Opt. 34, 4563-4572 (1995). [CrossRef] [PubMed]
  34. K. Masuda, "Infrared sea surface emissivity including multiple reflection effect for isotropic Gaussian slope distribution model," Remote Sens. Environ. 103, 488-496 (2006). [CrossRef]
  35. G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak Publishing, 1991).
  36. Midway Islands, https://www.cia.gov/cia/publications/factbook/geos/um.html.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited