OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4465–4476

Depolarization ratios of single ice particles assuming finite circular cylinders

Mathieu Nicolet, Olaf Stetzer, and Ulrike Lohmann  »View Author Affiliations

Applied Optics, Vol. 46, Issue 20, pp. 4465-4476 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1756 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Results of the depolarization ratio (δ) of single ice particles in fixed orientations are presented to determine whether discrimination between nonspherical ice crystals (causing depolarization) and spherical water droplets (inducing no depolarization) can be made. A T-matrix method is used to compute δ over a range of particle diameters from 0.13 to 4   μm and aspect ratios χ = d / h (d is the diameter and h the height of the particle) from 0.3 to 3, where ice crystals are assumed to have a circular cylindrical shape. The depolarization ratio is primarily dependent on the orientation of the particle. Some orientations return no depolarization, whereas others generate values reaching almost δ = 1 . Considering the depolarization averaged over all orientations, a dependence of δ with the particle size is observed where values close to 0.25 are reached. No strong influence of the aspect ratio on the depolarization for a given particle size of 2   μm is evident, as values remain in a range between 0.2 and 0.3.

© 2007 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: December 21, 2006
Revised Manuscript: March 29, 2007
Manuscript Accepted: March 30, 2007
Published: June 20, 2007

Mathieu Nicolet, Olaf Stetzer, and Ulrike Lohmann, "Depolarization ratios of single ice particles assuming finite circular cylinders," Appl. Opt. 46, 4465-4476 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Lohmann and J. Feichter, "Global indirect aerosol effects: a review," Atmos. Chem. Phys. Disc. 5, 715-737 (2005). [CrossRef]
  2. Intergovernmental Panel on Climate Change, IPCC Third Assessment Report (Cambridge U. Press, 200l).
  3. G. Vali, "Atmospheric ice nucleation--a review," J. Rech. Atmos. 19, 105-115 (1985).
  4. B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).
  5. S. E. Wood, M. B. Baker, and B. D. Swanson, "Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets," Rev. Sci. lnstrum. 73, 3988-3996 (2002). [CrossRef]
  6. E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001). [CrossRef]
  7. R. P. Lawson and R. H. Cormack, "Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research," Atmos. Res. 35, 315-348 (1995). [CrossRef]
  8. G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, "A new representation of the single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions," J. Atmos. Sci. 59, 2458-2478 (2002). [CrossRef]
  9. N. Liou and H. Lahore, "Laser sensing of cloud composition: a backscattered depolarization technique," J. Appl. Meteorol. 13, 257-263 (1974). [CrossRef]
  10. P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003). [CrossRef]
  11. J. Hallett, "Faceted snow crystals," J. Opt. Soc. Am. A 4, 581-588 (1987). [CrossRef]
  12. S. Asano and M. Sato, "Light scattering by randomly oriented spheroidal particles," Appl. Opt. 19, 962-974 (1980). [CrossRef] [PubMed]
  13. S. Asano, "Light scattering properties of spheroidal particles," Appl. Opt. 18, 712-723 (1979). [CrossRef] [PubMed]
  14. K. Muinonen, K. Lumme, J. Peltoniemi, and W. M. Irvine, "Light scattering by randomly oriented crystals," Appl. Opt. 28, 3051-3060 (1989). [CrossRef] [PubMed]
  15. Y. Takano and K. Jayaweera, "Scattering phase matrix for hexagonal ice crystals computed from ray optics," Appl. Opt. 24, 3254-3263 (1985). [CrossRef] [PubMed]
  16. Q. Cai and K. N. Liou, "Polarized light scattering by hexagonal ice crystals: theory," Appl. Opt. 21, 3569-3580 (1982). [CrossRef] [PubMed]
  17. K. D. Rockwitz, "Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1," Appl. Opt. 28, 4103-4110 (1989). [CrossRef] [PubMed]
  18. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).
  19. M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: an application to contrails," Geophys. Res. Lett. 25, 309-312 (1998). [CrossRef]
  20. S. Havemann and A. J. Baran, "Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders," J. Quant. Spectrosc. Radiat. Transfer. 70, 139-158 (2001). [CrossRef]
  21. S. Havemann, A. J. Baran, and J. M. Edwards, "Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 707-720 (2003). [CrossRef]
  22. F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 775-824 (2003). [CrossRef]
  23. A. J. Baran, P. Yang, and S. Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt. 40, 4376-4386 (2001). [CrossRef]
  24. P. C. Watermann, "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D 3, 825-839 (1971). [CrossRef]
  25. M. I. Mishchenko, "Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Appl. Opt. 39, 1026-1031 (2000). [CrossRef]
  26. M. I. Mishchenko, "T-matrix codes for computing electromagnetic scattering by nonspherical and aggregated particles," http://www.giss.nasa.gov/∼crmim/t_matrix.html.
  27. O. Stetzer and U. Lohmann are preparing a manuscript to be called, "The Zurich Ice Nucleation Chamber (ZINC)--A new tool to investigate heterogeneous ice formation on atmospheric aerosols."
  28. K. Sassen and K. N. Liou, "Scattering of polarized laser light by water droplet, mixed-phase and ice crystals clouds. Parts I + II," J. Atmos. Sci. 36, 838-861 (1979). [CrossRef]
  29. K. Sassen, "Depolarization of laser light backscattered by artificial clouds," J. Appl. Meteorol. 13, 923-933 (1974). [CrossRef]
  30. K. Sassen, "Ice crystal habit discrimination with the optical backscatter depolarization technique," J. Appl. Meteorol. 16, 425-431 (1977). [CrossRef]
  31. S. Büttner, "Steulichtexperimente an asphärischen Aerosolpartikeln: depolarization und Vorwärtsstreuverhältnis von Mineralstaub und Eiskristallen," Dissertation FZKA 6989, Forschungszentrum Karlsruhe (2004).
  32. Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003). [CrossRef]
  33. T. Sakai, T. Nagai, M. Nakazato, Y. Mano, and T. Matsumura, "Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba," Appl. Opt. 42, 7103-7116 (2003). [CrossRef]
  34. S. G. Warren, "Optical constants of ice from the ultraviolet to the microwave," Appl. Opt. 23, 1206-1225 (1984). [CrossRef] [PubMed]
  35. K. C. Young, Microphysical Processes in Clouds (Oxford U. Press, 1993).
  36. N. T. Zakharova and M. I. Mishchenko, "Scattering properties of needlelike and platelike ice spheroids with moderate size parameters," Appl. Opt. 39, 5052-5057 (2000). [CrossRef]
  37. M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995). [CrossRef] [PubMed]
  38. G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, "Altitude-resolved properties of a Saharan dust event over the Mediterranean," Atmos. Environ. 34, 5119-5127 (2000). [CrossRef]
  39. G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003). [CrossRef]
  40. K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, "Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results," Ann. Geophys. Res. Lett. 30, 1633-1636 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited