OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 20 — Jul. 10, 2007
  • pp: 4501–4514

Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes

Nathan Doble, Donald T. Miller, Geunyoung Yoon, and David R. Williams  »View Author Affiliations

Applied Optics, Vol. 46, Issue 20, pp. 4501-4514 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1618 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Numerous types of wavefront correctors have been employed in adaptive optics (AO) systems for correcting the ocular wavefront aberration. While all have improved image quality, none have yielded diffraction-limited imaging for large pupils ( 6 mm ) , where the aberrations are most severe and the benefit of AO the greatest. To this end, we modeled the performance of discrete actuator, segmented piston-only, and segmented piston∕tip∕tilt wavefront correctors in conjunction with wavefront aberrations measured on normal human eyes in two large populations. The wavefront error was found to be as large as 53 μm , depending heavily on the pupil diameter ( 2 7.5 mm ) and the particular refractive state. The required actuator number for diffraction-limited imaging was determined for three pupil sizes (4.5, 6, and 7.5 mm ), three second-order aberration states, and four imaging wavelengths (0.4, 0.6, 0.8, and 1.0 μm ). The number across the pupil varied from only a few actuators in the discrete case to greater than 100 for the piston-only corrector. The results presented will help guide the development of wavefront correctors for the next generation of ophthalmic instrumentation.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision and color

Original Manuscript: October 16, 2006
Revised Manuscript: January 31, 2007
Manuscript Accepted: February 15, 2007
Published: June 20, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Nathan Doble, Donald T. Miller, Geunyoung Yoon, and David R. Williams, "Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes," Appl. Opt. 46, 4501-4514 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  2. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberrations," Opt. Express 8, 631-643 (2001). [CrossRef] [PubMed]
  3. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908 (2002). [CrossRef]
  4. N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, "Small table-top adaptive optical systems for human retinal imaging," Proc. SPIE 4825, 99-108 (2002). [CrossRef]
  5. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004). [CrossRef]
  6. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express 14, 4552-4569 (2006). [CrossRef] [PubMed]
  7. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, "In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with retinal function," Invest. Ophthalmol. Visual Sci. 47, 2080-2092 (2006). [CrossRef]
  8. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989). [CrossRef] [PubMed]
  9. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). [PubMed]
  10. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 8, 3354-3367 (2006). [CrossRef]
  11. D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, "Coherence gating and adaptive optics in the eye," Proc. SPIE 4956, 65-72 (2003). [CrossRef]
  12. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  13. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005). [CrossRef] [PubMed]
  14. R. J. Zawadzki, S. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005). [CrossRef] [PubMed]
  15. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). [CrossRef] [PubMed]
  16. E. J. Fernández, B. Povazvay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005). [CrossRef] [PubMed]
  17. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 8, 3345-3353 (2006). [CrossRef]
  18. G. Y. Yoon and D. R. Williams, "Visual performance after correcting the monochromatic and chromatic aberrations of the eye," J. Opt. Soc. Am. A 19, 266-275 (2002). [CrossRef]
  19. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004). [CrossRef]
  20. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006). [CrossRef]
  21. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, eds., Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, 2006). [CrossRef]
  22. N. Doble, "High-resolution, in vivo retinal imaging using adaptive optics and its future role in ophthalmology," Expert Rev. Medical Devices 2, 205-216 (2005). [CrossRef]
  23. B. R Oppenheimer, D. L. Palmer, R. G. Dekany, A. Sivaramakrishnan, M. A. Ealey, and T. R. Price, "Investigating a Xinetics Inc. deformable mirror," Proc. SPIE 3126, 569-579 (1997). [CrossRef]
  24. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  25. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).
  26. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, "Dynamics of the eye's wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001). [CrossRef]
  27. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, "Benefit of higher closed-loop bandwidths in ocular adaptive optics," Opt. Express 11, 2597-2605 (2003). [CrossRef] [PubMed]
  28. S. A. Burns, S. Marcos, A. E. Elsner, and S. Bara, "Contrast improvement for confocal retinal imaging using phase correcting plates," Opt. Lett. 27, 400-402 (2002). [CrossRef]
  29. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006). [CrossRef] [PubMed]
  30. N. Doble and D. R. Williams, "The application of MEMS technology for adaptive optics in vision science," IEEE J. Sel. Top. Quantum Electron. 10, 629-635 (2004). [CrossRef]
  31. G. V. Vdovin and P. M. Sarro, "Flexible mirror micromachined in silicon," Appl. Opt. 34, 2968-2972 (1995). [CrossRef] [PubMed]
  32. E. J. Fernandez and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003). [CrossRef] [PubMed]
  33. E. J. Fernandez, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001). [CrossRef]
  34. D.-U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomedical Opt. 7, 451-456 (2002). [CrossRef]
  35. E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005). [CrossRef] [PubMed]
  36. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "The use of a microelectromechanical mirror for adaptive optics in the human eye," Opt. Lett. 27, 1579-1581 (2002). [CrossRef]
  37. J. A. Perreault, T. G. Bifano, B. M. Levine, and M. N. Horenstein, "Adaptive optic correction using microelectromechanical deformable mirrors," Opt. Eng. 41, 561-566 (2002). [CrossRef]
  38. L. N. Thibos and A. Bradley, "Use of liquid-crystal adaptive-optics to alter the refractive state of the eye," Optom. Vision Sci. 74, 581-587 (1997). [CrossRef]
  39. F. Vargas-Martin, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998). [CrossRef]
  40. P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004). [CrossRef] [PubMed]
  41. F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998). [CrossRef]
  42. D. T. Miller, L. N. Thibos, and X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005). [CrossRef] [PubMed]
  43. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VISA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002). [PubMed]
  44. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  45. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wave-front aberration of the eye by a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998). [CrossRef]
  46. R. H. Hudgin, "Wave-front compensation error due to finite element corrector size," J. Opt. Soc. Am. 67, 393-395 (1977). [CrossRef]
  47. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC, 1996).
  48. N. Doble, M. Helmbrecht, M. Hart, and T. Juneau, "Advanced wave-front correction technology for the next generation of adaptive optics equipped ophthalmic instrumentation," Proc. SPIE 5688, 125-132 (2006). [CrossRef]
  49. W. B. King, "Dependence of the Strehl ratio on the magnitude of the variance of the wave aberration," J. Opt. Soc. Am. 58, 655-661 (1967). [CrossRef]
  50. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  51. R. J. Zawadzki, S. S. Choi, J. S. Werner, S. M. Jones, D. Chen, S. S. Olivier, Y. Zhang, J. Rha, B. Cense, and D. T. Miller, "Two deformable mirror adaptive optics system for In vivo retinal imaging with optical coherence tomography," presented at the 2006 Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 22 March 2006.
  52. R. H. Webb, M. J. Albanese, Y. Zhou, T. Bifano, and S. A. Burns, "Stroke amplifier for deformable mirrors," Appl. Opt. 43, 5330-5333 (2004). [CrossRef] [PubMed]
  53. O. C. Zienkiewicz, The Finite Element Method in Engineering Science, 2nd ed. (McGraw-Hill, 1971).
  54. J. H. Lee, T.-K. Uhm, and S.-K. Youn, "First-order analysis of thin-plate deformable mirrors," J. Korean Phys. Soc. 44, 1412-1416 (2004).
  55. L. Arnold, "Influence functions of a thin shallow meniscus-shaped mirror," Appl. Opt. 36, 2019-2028 (1997). [CrossRef] [PubMed]
  56. A. Menikoff, "Actuator influence functions of active mirrors," Appl. Opt. 30, 833-838 (1991). [CrossRef] [PubMed]
  57. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, "The locus of fixation and the foveal cone mosaic," J. Vision 5, 632-639 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited