OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 21 — Jul. 20, 2007
  • pp: 4587–4593

Quadrant kinoform: an approach to multiplane dynamic three-dimensional holographic trapping

Federico Belloni and Serge Monneret  »View Author Affiliations


Applied Optics, Vol. 46, Issue 21, pp. 4587-4593 (2007)
http://dx.doi.org/10.1364/AO.46.004587


View Full Text Article

Enhanced HTML    Acrobat PDF (776 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Real-time dynamic holographic optical tweezers suffer from an intrinsic limitation. The diffractive optical element, which is the key to reconstruction, requires time for the calculation and physical constraints to be satisfied. In particular, when working in a volume these requirements become highly expensive. Quadrant kinoform represents an alternative to traditional 3D holograms. A spatial domain multiplexing combined with lens term phase profiles allow the independent addressing and control of different planes in the reconstruction volume. The bidimensional holograms used pose less severe physical constraints and the reduced size leads, at the cost of a lower reconstruction resolution, to a consistent speedup in the computation time thus improving real-time interactions.

© 2007 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Holography

History
Original Manuscript: December 18, 2006
Revised Manuscript: March 26, 2007
Manuscript Accepted: March 27, 2007
Published: July 6, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Federico Belloni and Serge Monneret, "Quadrant kinoform: an approach to multiplane dynamic three-dimensional holographic trapping," Appl. Opt. 46, 4587-4593 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-21-4587


Sort:  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  2. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  3. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998). [CrossRef]
  4. D. G. Grier and Y. Roichman, "Holographic optical trapping," Appl. Opt. 45, 880-887 (2006). [CrossRef] [PubMed]
  5. L. Lesem, P. Hirsch, and J. Jordan, "The kinoform: a new wavefront reconstruction device," IBM J. Res. Dev. 13, 150-155 (1969). [CrossRef]
  6. G. Shabtay, "Three-dimensional beam forming and Ewald's surfaces," Opt. Commun. 226, 33-37 (2003). [CrossRef]
  7. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005). [CrossRef] [PubMed]
  8. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004). [CrossRef]
  9. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  10. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999). [CrossRef]
  11. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  12. D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Z. Proietti, and E. Di Fabrizio, "Multiple optical trapping by means of diffractive optical elements," Jpn. J. Appl. Phys., Part 1 , 43, 3910-3915 (2004). [CrossRef]
  13. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004). [CrossRef] [PubMed]
  14. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, "Interactive approach to optical tweezers control," Appl. Opt. 45, 897-903 (2006). [CrossRef] [PubMed]
  15. P. J. Rodrigo, V. R. Daria, and J. Gluckstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett. 29, 2270-2272 (2004). [CrossRef] [PubMed]
  16. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, "Diffractive optical tweezers in the Fresnel regime," Opt. Express 12, 2243-2250 (2004). [CrossRef] [PubMed]
  17. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martin-Badosa, "Fast generation of holographic optical tweezers by random mask encoding of Fourier components," Opt. Express 14, 2101-2107 (2006). [CrossRef] [PubMed]
  18. G. Whyte and J. Courtial, "Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm," New J. Phys. 7, 117 (2005). [CrossRef]
  19. R. Gerchberg and W. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik (Stuttgart) 35, 237-246 (1972).
  20. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001). [CrossRef]
  21. J. E. Curtis, C. H. Schmitz, and J. P. Spatz, "Symmetry dependence of holograms for optical trapping," Opt. Lett. 30, 2086-2088 (2005). [CrossRef] [PubMed]
  22. H. Felgner, O. Muller, and M. Schliwa, "Calibration of light forces in optical tweezers," Appl. Opt. 34, 977-982 (1995). [CrossRef] [PubMed]
  23. K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, "Optical trap stiffness in the presence and absence of spherical aberrations," Appl. Opt. 45, 1812-1819 (2006). [CrossRef] [PubMed]
  24. X. D. Xun and R. W. Cohn, "Phase calibration of spatially nonuniform spatial light modulators," Appl. Opt. 43, 6400-6406 (2004). [CrossRef] [PubMed]
  25. S. Monneret, F. Belloni, and O. Soppera, "Combining fluidic reservoirs and optical tweezers to control beads/living cells contacts," Microfluidics and Nanofluidics (2007); http://www.springerlink.com/content/1v216l6873485058/?p=665491cc0981482bb0da39d40f2a6651&pi=2. [CrossRef]
  26. X. Wei, B. J. Tromberg, and M. D. Calahan, "Mapping the sensitivity of T cells with an optical trap: polarity and minimal number of receptors for Ca2+ signaling," Proc. Natl. Acad. Sci. U.S.A. 96, 8471-8476 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3346 KB)     
» Media 2: AVI (3501 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited