OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 21 — Jul. 20, 2007
  • pp: 4736–4745

Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration

Alexandre R. S. Romariz and Kelvin H. Wagner  »View Author Affiliations

Applied Optics, Vol. 46, Issue 21, pp. 4736-4745 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (866 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optoelectronic implementation of a modified FitzHugh–Nagumo neuron model is proposed, analyzed, and experimentally demonstrated. The setup uses linear optics and linear electronics for implementing an optical wavelength-domain nonlinearity. The system attains instability through a bifurcation mechanism present in a class of neuron models, a fact that is shown analytically. The implementation exhibits basic features of neural dynamics including threshold, production of short pulses (or spikes), and refractoriness.

© 2007 Optical Society of America

OCIS Codes
(200.4260) Optics in computing : Neural networks
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:

Original Manuscript: April 25, 2006
Revised Manuscript: February 21, 2007
Manuscript Accepted: April 11, 2007
Published: July 6, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Alexandre R. S. Romariz and Kelvin H. Wagner, "Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration," Appl. Opt. 46, 4736-4745 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Recce, "Encoding information in neuronal activity," in Pulsed Neural Networks, W. Maass and C. Bishop, eds., pp. 111-126 (MIT Press, 1999).
  2. T. Sejnowski, "Neural pulse coding," in Pulsed Neural Networks, W. Maass and C. M. Bishop, eds. (MIT Press, 1999).
  3. F. Rieke, D. Warland, R. von Steveninck, and W. Bialek, Spikes: Exploring the Neural Code (MIT Press, 1997).
  4. M. V. Tsodyks and H. Markram, "The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability," Proc. Natl. Acad. Sci. U.S.A. 94, 719-723 (1997). [CrossRef] [PubMed]
  5. R. van Rullen and S. Thorpe, "Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex," Neural Comput. 13, 1255-1283 (2001). [CrossRef] [PubMed]
  6. S. Lecoeuche and D. Tsaptsinos, "Novel applications of neural networks in engineering," Eng. Applic. Artif. Intell. 19, 719-720 (2006). [CrossRef]
  7. W. Maass, "Fast sigmoidal networks via spiking neurons," Neural Comput. 9, 279-304 (1997). [CrossRef] [PubMed]
  8. J. Hopfield, "Pattern recognition computation using action potential timing for stimulus representation," Nature 376, 33-36 (1995). [CrossRef] [PubMed]
  9. D. V. Buonomano and M. Merzenich, "A neural network model of temporal code generation and position-invariant pattern recognition," Neural Comput. 11, 103-116 (1999). [CrossRef] [PubMed]
  10. J. Johnson, "Pulsed-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images," Appl. Opt. 33, 6239-6253 (1994). [CrossRef] [PubMed]
  11. R. Sarpeshkar and M. O'Halloran, "Scalable hybrid computation with spikes," Neural Comput. 14, 2003-2038 (2002). [CrossRef] [PubMed]
  12. R. H. Hahnloser, R. Sarpeshkar, M. Mahowald, R. Douglas, and H. S. Seung, "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature 405, 947-951 (2000). [CrossRef] [PubMed]
  13. A. L. Hodgkin and A. F. Huxley, "A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes," J. Physiol. 117, 500-544 (1952). [PubMed]
  14. C. Morris and H. Lecar, "Voltage oscillations in the barnacle giant muscle fiber," Biophys. J. 35, 193-213 (1981). [CrossRef] [PubMed]
  15. J. Rinzel and G. Ermentrout, "Analysis of neural excitability and oscillations," in Methods in Neuronal Modeling: From Synapses to Networks, I. Segev and J. Fleshman, eds., 135-169 (MIT Press, 1989).
  16. R. FitzHugh, "Impulses and physiological states in models of nerve membrane," Biophys. J. 1, 445-466 (1961). [CrossRef] [PubMed]
  17. J. Nagumo, S. Arimoto, and S. Yoshizawa, "An active pulse transmission line simulating nerve axon," Proc. IRE 50, 2061-2070 (1962). [CrossRef]
  18. L. Abbott and T. Kepler, "Model neurons: from Hodgkin-Huxley to Hopfield," in Statistical Mechanics of Neural Networks, L. Garrido, ed., 5-18 (Springer, 1990). [CrossRef]
  19. A. Giaquinta, M. Argentina, and M. Velarde, "A simple generalized excitability model mimicking salient features of neuron dynamics," Journal of Statistical Physics 101, 665-678 (2000). [CrossRef]
  20. D. Psaltis, D. Brady, X. Gu, and S. Lin, "Holography in artificial neural networks," Nature 343, 325-330 (1990). [CrossRef] [PubMed]
  21. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, 1989). [CrossRef]
  22. A. Murray, "Pulse-based computation in VLSI neural networks," in Pulsed Neural Networks, W. Maass and C. Bishop, eds., 87-107 (MIT Press, 1999).
  23. D. Psaltis, D. Brady, and K. Wagner, "Adaptive optical networks using photorefractive crystals," Appl. Opt. 27, 334-341 (1988).
  24. A. D. Fisher, W. L. Lippincott, and J. N. Lee, "Optical implementations of associative networks with versatile adaptive learning capabilities," Appl. Opt. 26, 5039-5054 (1987). [CrossRef] [PubMed]
  25. P. Moerland, E. Fiesler, and I. Saxena, "Discrete all-positive multilayer perceptrons for optical implementation," Opt. Eng. 37, 1305-1315 (1998). [CrossRef]
  26. S. Psaltis and N. Fahrat, "Optical information processing based on an associative-memory model of neural nets with thresholding and feedback," Opt. Lett. 10, 98-100 (1985). [CrossRef] [PubMed]
  27. C. Peterson, S. Redfield, J. Keeler, and E. Hartman, "Optoelectronic implementation of multilayer neural networks in a single photorefractive crystal," Opt. Eng. 29, 359-368 (1990). [CrossRef]
  28. S. Draghici, "On the capabilities of neural networks using limited precision weights," Neural Networks 15, 395-414 (2002). [CrossRef] [PubMed]
  29. K. Wagner and D. Psaltis, "Multilayer optical learning networks," Appl. Opt. 26, 5061-5076 (1987). [CrossRef] [PubMed]
  30. N. H. Farhat, D. Psaltis, A. Prata, and E. Pack, "Optical implementation of the Hopfield model," Appl. Opt. 24, 1469-1475 (1985). [CrossRef] [PubMed]
  31. K. Wagner and T. Slagle, "Optical competitive learning with VLSI liquid-crystal winner-take-all modulators," Appl. Opt. 32, 1408-1435 (1993). [CrossRef] [PubMed]
  32. Y. Frauel, G. Pauliat, A. Villing, and G. Roosen, "High-capacity photorefractive neural network implementing a Kohonen topological map," Appl. Opt. 40, 5162-5169 (2001). [CrossRef]
  33. P. Silveira, G. Pati, and K. Wagner, "Optical finite impulse response neural networks," Appl. Opt. 41, 4162-4180 (2002). [CrossRef] [PubMed]
  34. G. Zhou and D. Anderson, "Acoustic signal recognition with a photorefractive time-delay neural network," Opt. Lett. 19, 655-657 (1994). [CrossRef] [PubMed]
  35. R. Eckhorn, H. Reitboeck, M. Arndt, and P. Dicke, "Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex," Neural Comput. 2, 293-307 (1990). [CrossRef]
  36. J. Johnson and D. Ritter, "Observation of periodic waves in a pulse-coupled neural network," Opt. Lett. 18, 1253-1266 (1993). [CrossRef] [PubMed]
  37. J. L. Johnson, "All-optical pulse generators for optical computing," in Proceedings of the International Topical Meeting on Optics in Computing, 195-197, Taipei, Taiwan, 2002.
  38. A. Romariz and K. Wagner, "Tunable vertical cavity surface-emitting laser with feedback to implement a pulsed neural model. 2. High-frequency effects and optical coupling," Appl. Opt. 46,4746-4753 (2007). [CrossRef] [PubMed]
  39. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985).
  40. S. Tang and J. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed optoelectronic feedback," IEEE J. Quantum Electron. 37, 329-336 (2001). [CrossRef]
  41. T. Takizawa, Y. Liu, and J. Ohtsubo, "Chaos in a feedback Fabry-Perot Interferometer," IEEE J. Quantum Electron. 30, 334-338 (1994). [CrossRef]
  42. J. Goedgebuer, L. Larger, and H. Porte, "Chaos in wavelength with a feedback tunable laser diode," Phys. Rev. E 57, 2795-2798 (1998). [CrossRef]
  43. J. N. Blakely, L. Illing, and D. J. Gauthier, "High-speed chaos in an optical feedback system with flexible timescales," IEEE J. Quantum Electron. 40, 299-305 (2004). [CrossRef]
  44. E. Mos, J. Hoppenbrouwers, M. Hill, M. Blüm, J. Schleipen, and H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," IEEE Trans. Neural Netw. 11, 968-976 (2000). [CrossRef]
  45. H. Porte and J. Goedgebuer, "Bistability in wavelength using an electro-optically tuned dye laser," Opt. Commun. 51, 331-336 (1984). [CrossRef]
  46. W. Nakwaski, "Thermal aspects of efficient operation of vertical-cavity surface-emitting lasers," Opt. Quantum Electron. 28, 335-352 (1996). [CrossRef]
  47. J. Gustavsson, J. Vukusic, J. Bengtsson, and A. Larson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002). [CrossRef]
  48. C. Degen, I. Fischer, and W. Elsäßer, "Transverse modes in thermally detuned oxide-confined vertical-cavity surface-emitting lasers," Phys. Rev. A 63, 023817 (2001). [CrossRef]
  49. P. Mena, J. Morikuni, S. Kang, A. Hartron, and K. Wyatt, "A simple rate-equation-based thermal VCSEL model," J. Lightwave Technol. 17, 865-871 (1999). [CrossRef]
  50. F. Hoppensteadt and E. Izhikevich, Weakly Connected Neural Networks (Springer, 1997). [CrossRef]
  51. Y. Kuznetsov, Elements of Applied Bifurcation Theory (Springer-Verlag, 1995).
  52. B. Linares-Barranco, E. Sánchez-Sinencio, A. Rodríguez-Vázquez, and J. Huertas, "A CMOS implementation of FitzHugh-Nagumo neuron model," IEEE J. Solid-State Circuits 26, 956-965 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited