OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 4916–4922

Backscattering measurements from individual Scots pine needles

Sanna Kaasalainen and Miina Rautiainen  »View Author Affiliations

Applied Optics, Vol. 46, Issue 22, pp. 4916-4922 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present ground reference measurements of the directional scattering properties of conifer needles. As the development of multiangular remote sensing instruments sets a growing need for reliable ground reference measurement techniques and databases, there is an increasing demand for data on the spectral properties of conifer needles in forest reflectance modeling and the inversion of physically based models. These data are scarce due to technical and conceptual problems related to measuring thin needles, and the needle directional spectral properties are currently nonexistent even for single wavelengths. We present results from measuring the monochromatic backscattering of Scots pine needles in a controlled laboratory environment; we feel these results of the hot spot signatures of individual conifer needles are unique. The experiment was conducted at 1064 nm with an instrument constructed specifically for backscatter measurement, based on techniques commonly used for laser backscattering measurements and CCD photometry. Strong backscattering peaks near 0° were observed for the needles, the amplitude of the brightening being up to approximately 40%.

© 2007 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(290.1350) Scattering : Backscattering

ToC Category:

Original Manuscript: January 9, 2007
Revised Manuscript: May 2, 2007
Manuscript Accepted: May 3, 2007
Published: July 3, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Sanna Kaasalainen and Miina Rautiainen, "Backscattering measurements from individual Scots pine needles," Appl. Opt. 46, 4916-4922 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gates, H. Keegan, J. Schleter, and V. Weidner, "Spectral properties of plants," Appl. Opt. 4, 11-20 (1965). [CrossRef]
  2. T. Brakke, J. Smith, and J. Harnden, "Bidirectional scattering of light from tree leaves," Remote Sens. Environ. 29, 175-183 (1989). [CrossRef]
  3. E. Walter-Shea and J. Norman, "Leaf optical properties," in Photon-Vegetation Interactions--Applications in Optical Remote Sensing and Plant Ecology, R.Myneni and J.Ross, eds. (Springer-Verlag, 1989), pp. 229-251.
  4. D. Williams, "A comparison of spectral reflectance properties at the needle, branch, and canopy level for selected conifer species," Remote Sens. Environ. 35, 79-93 (1991). [CrossRef]
  5. B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, and G. Schmuck, Leaf Optical Properties Experiment 93 (LOPEX 93), Report EUR-16095-EN (European Commission, Joint Research Centre, Institute For Remote Sensing Application, Ispra, Italy, 1995).
  6. L. Bousquet, S. Lachérade, S. Jacquemoud, and I. Moya, "Leaf BRDF measurements and model for specular and diffuse components differentiation," Remote Sens. Environ. 98, 201-211 (2005). [CrossRef]
  7. D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, "A new spectrogoniophotometer to measure leaf spectral and directional optical properties," Remote Sens. Environ. 109, 107-117 (2007). [CrossRef]
  8. T. Fourty, F. Baret, S. Jacquemoud, G. Schmuck, and J. Verdebout, "Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems," Remote Sens. Environ. 56, 104-117 (1996). [CrossRef]
  9. T. Dawson, P. Curran, and S. Plummer, "LIBERTY--modeling the effects of leaf biochemical concentration on reflectance spectra," Remote Sens. Environ. 65, 50-60 (1998). [CrossRef]
  10. B. Ganapol, L. Johnson, P. Hammer, C. Hlavka, and D. Peterson, "LEAFMOD: a new within-leaf radiative transfer model," Remote Sens. Environ. 63, 182-193 (1998). [CrossRef]
  11. S. Jacquemoud and F. Baret, "PROSPECT: a model of leaf optical properties spectra," Remote Sens. Environ. 34, 75-91 (1990). [CrossRef]
  12. S. Jacquemoud and S. Ustin, "Leaf optical properties: a state of the art," in Proceedings of the 8th International Symposium on Physical Measurements and Signatures in Remote Sensing, Aussois (France), 8-12 Jan. 2001, pp. 223-232.
  13. S. Jacquemoud and L. Bousquet, "Modélisation des propriétés optiques des feuilles: état de l'art, perspectives et applications en télédétection," in Le 12ème Congrès de l'Association Québécoise de Télédétection, Ville de Saguenay (Canada), 10-12 May 2005.
  14. Z. Malenovský, J. Albrechtová, Z. Lhotáková, R. Zurita-Milla, J. Clevers, M. Schaepman and P. Cudlín, "Applicability of the PROSPECT model for Norway spruce needles," Int. J. Remote Sens. 27, 5315-5340 (2006). [CrossRef]
  15. M. Middleton, E. Walter-Shea, M. Mesarch, S. Chan, and R. Rusin, "Optical properties of canopy elements in black spruce, jack pine and aspen stands Saskatchewan, Canada," Can. J. Remote Sens. 24, 108-119 (1998).
  16. M. Mesarch, E. Walter-Shea, G. Asner, E. Middleton, and S. Chan, "A revised measurement methodology for conifer needles spectral optical properties: evaluating the influence of gaps between elements," Remote Sens. Environ. 68, 177-192 (1999). [CrossRef]
  17. C. Daughtry, L. Biehl, and K. Ranson, "A new technique to measure the spectral properties of conifer needles," Remote Sens. Environ. 27, 81-91 (1989). [CrossRef]
  18. T. Nilson and J. Ross, "Modeling radiative transfer through forest canopies: implications for canopy photosynthesis and remote sensing," in The Use of Remote Sensing in the Modeling of Forest Productivity, H.Gholz, K.Nakane, and H.Shimoda, eds. (Kluwer Academic, 1997), pp. 23-60. [CrossRef]
  19. G. Carter, K. Paliwal, U. Pathre, T. Green, R. Mitchell, and D. Gjerstad, "Effect of competition and leaf age on visible and infrared reflectance in pine foliage," Plant , Cell Environ. 12, 309-315 (1989).
  20. N. Coops and C. Stone, "A comparison of field-based and modeled reflectance spectra from damaged Pinus radiata foliage," Aust. J. Botany 53, 417-429 (2005). [CrossRef]
  21. H. Breece and R. Holmes, "Bidirectional scattering characteristics of healthy green soybean and corn leaves in vivo," Appl. Opt. 10, 119-127 (1971). [CrossRef]
  22. J. Sheehy, "Some optical properties of leaves of eight temperate forage grasses," Ann. Bot. 39, 377-386 (1975).
  23. T. Brakke, "Specular and diffuse components of radiation scattered by leaves," Agric. Forest Meteorol. 71, 283-295 (1994). [CrossRef]
  24. J.-L. Widlowski, M. Taberner, B. Pinty, V. Bruniquel-Pinel, M. Disney, R. Fernandes, J.-P. Gastellu-Etchegorry, N. Gobron, A. Kuusk, T. Lavergne, S. Leblanc, P. Lewis, E. Martin, M. Mõttus, P. R. J. North, W. Qin, M. Robustelli, N. Rochdi, R. Ruiloba, C. Soler, R. Thompson, W. Verhoef, M. Verstraete, and D. Xie, "The third Radiation transfer Model Intercomparison (RAMI) exercise: documenting progress in canopy reflectance models," J. Geophys. Res. 112, D09111, doi: (2007). [CrossRef]
  25. B. Pinty, N. Gobron, J.-L. Widlowski, S. A. W. Gerstl, M. M. Verstraete, M. Antunes, C. Bacour, F. Gascon, J.-P. Gastellu, N. Goel, S. Jacquemoud, P. North, W. Qin, and R. Thompson, "Radiation transfer model intercomparison (RAMI) exercise," J. Geophys. Res. 106, 11937-11956, doi: (2001). [CrossRef]
  26. B. Pinty, "Radiation transfer model intercomparison (RAMI) exercise: results from the second phase," J. Geophys. Res. 109, D06210, doi: (2001). [CrossRef]
  27. J. Peltoniemi, S. Kaasalainen, J. Näränen, M. Rautiainen, P. Stenberg, H. Smolander, S. Smolander, and P. Voipio, "BRDF measurement of understorey vegetation in pine forests: dwarf shrubs, lichen, and moss," Remote Sens. Environ. 94, 343-354 (2005). [CrossRef]
  28. D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, "Experimental evidence for recurrent multiple scattering events of light in disordered media," Phys. Rev. Lett. 74, 4193-4196 (1995). [CrossRef] [PubMed]
  29. S. Kaasalainen, E. Ahokas, J. Hyyppä, and J. Suomalainen, "Study of surface brightness from backscattered laser intensity: calibration of laser data," IEEE Trans. Geosci. Remote Sens. Lett. 2, 255-259 (2005). [CrossRef]
  30. A. Richardson and G. Berlyn, "Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting," Tree Physiology 22, 499-506 (2002). [PubMed]
  31. Z. Malenovský, "Quantitative remote sensing of Norway spruce (Picea abies (L.) Karst): Spectroscopy from needles to crowns to canopies," Ph.D. dissertation (Wageningen University, 2006), ISBN: 90-8504-503-7.
  32. S. Kaasalainen, J. Peltoniemi, J. Näränen, F. Stenman, and M. Kaasalainen, "Small-angle goniometry for backscattering measurements in the broadband spectrum," Appl. Opt. 44, 1485-1490 (2005). [CrossRef] [PubMed]
  33. G. Yoon, D. N. Ghosh Roy, and R. C. Straight, "Coherent backscattering in biological media: measurement and estimation of optical properties," Appl. Opt. 32, 580-585 (1993). [CrossRef] [PubMed]
  34. R. M. Nelson, W. D. Smythe, B. W. Hapke, and A. S. Hale, "Low phase angle laboratory studies of the opposition effect: search for wavelength dependence," Planet. Space Sci. 50, 849-856 (2002). [CrossRef]
  35. Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, and P. Helfenstein, "The opposition effect and negative polarization of structural analogs for planetary regoliths," Icarus 159, 396-416 (2002). [CrossRef]
  36. S. Kaasalainen, J. Hyyppä, and T. Mielonen, "Laboratory calibration of backscattered intensity for laser scanning land targets," in ISPRS WG III/3, III/4, V/3 Workshop "Laser Scanning 2005," Enschede, the Netherlands, 12-14 September 2005, pp. 13-17.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited