OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5183–5188

Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers

Shu-Guang Li, Si-Ying Liu, Zhao-Yuan Song, Yin Han, Tong-Lei Cheng, Gui-Yao Zhou, and Lan-Tian Hou  »View Author Affiliations

Applied Optics, Vol. 46, Issue 22, pp. 5183-5188 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an absorption transmission spectrum of C H 4 in a 16.9   cm long index-guiding photonic crystal fiber (PCF) fabricated in our laboratory. One of the main factors to improve the sensitivity is to increase the fraction of power in PCF cladding air holes. We study the fraction of power in PCF cladding air holes as a function of the index-guiding PCF parameters. We found that a PCF with small spacing and a large air-filling ratio has a higher fraction of power in its cladding air holes. At the same time the mode area in this PCF is small and would generate strong nonlinear effects in the fiber. If we use a PCF in which the core is formed by missing seven air holes, it is immediately obvious that the PCF used as a sensor has higher sensitivity and a larger mode area.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(290.1990) Scattering : Diffusion
(330.1880) Vision, color, and visual optics : Detection

ToC Category:
Fiber Optic Sensors

Original Manuscript: October 25, 2006
Revised Manuscript: April 17, 2007
Manuscript Accepted: April 18, 2007
Published: July 9, 2007

Shu-Guang Li, Si-Ying Liu, Zhao-Yuan Song, Yin Han, Tong-Lei Cheng, Gui-Yao Zhou, and Lan-Tian Hou, "Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers," Appl. Opt. 46, 5183-5188 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, "Modeling the fabrication of hollow fibers: capillary drawing," J. Lightwave Technol. 19, 1924-1931 (2001). [CrossRef]
  2. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004). [CrossRef] [PubMed]
  3. Zhou Guiyao, Hou Zhiyun, Li Shuguang, and Hou Lantian, "Mathematical model for fabrication of micro-structure fibres," Chin. Phys. Lett. 22, 1162-1165 (2005). [CrossRef]
  4. C. Kerbage, B. Eggleton, P. Westbrook, and R. Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-122 (2000). [CrossRef] [PubMed]
  5. K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005). [CrossRef] [PubMed]
  6. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). [CrossRef] [PubMed]
  7. M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005). [CrossRef]
  8. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, "Stress-induced birefringence in large-mode-area micro-structured optical fibers," Opt. Express 13, 3637-3646 (2005). [CrossRef] [PubMed]
  9. M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005). [CrossRef] [PubMed]
  10. Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng, "Propagation properties of an index guiding high birefringence fibre," Chin. Phys. 13, 1493-1499 (2004). [CrossRef]
  11. M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004). [CrossRef]
  12. M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004). [CrossRef]
  13. W. J. Bock, W. Urbanczyk, and J. Wojcik, "Measurements of sensitivity of the single-mode photonic crystal holey fibre to temperature, elongation and hydrostatic pressure," Meas. Sci. Technol. 15, 1496-1500 (2004). [CrossRef]
  14. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004). [CrossRef]
  15. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005). [CrossRef]
  16. W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001). [CrossRef]
  17. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005). [CrossRef]
  18. N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005). [CrossRef]
  19. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004). [CrossRef]
  20. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express , 12, 4080-4087 (2004). [CrossRef] [PubMed]
  21. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, and T. P. Hansen, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  22. G. Stewart, W. Jin, and B. Culshaw, "Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39, 42-47 (1997). [CrossRef]
  23. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002). [CrossRef]
  24. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003). [CrossRef] [PubMed]
  25. G. Pickrell, W. Peng, and A. Wang, "Random-hole optical fiber evanescent-wave gas sensing," Opt. Lett. 29, 1476-1478 (2004). [CrossRef] [PubMed]
  26. N. J. Florous, S. K. Varsheney, K. Saitoh, and M. Koshiba, "Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins," IEEE Photon. Technol. Lett. 18, 1663-1665 (2006). [CrossRef]
  27. N. J. Florous, K. Saitoh, S. K. Varsheney, and M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006). [CrossRef]
  28. J. C. Owens, "Optical refractive index of air: dependence on pressure, temperature, and composition," Appl. Opt. 6, 51-59 (1967). [CrossRef] [PubMed]
  29. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002). [CrossRef]
  30. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  31. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited