OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5276–5281

High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding

Yuh-Sien Sun, Yuan-Fong Chau, Han-Hsuan Yeh, Lin-Fang Shen, Tzong-Jer Yang, and Din Ping Tsai  »View Author Affiliations

Applied Optics, Vol. 46, Issue 22, pp. 5276-5281 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High birefringence induced by elliptical air hole photonic crystal fibers (EHPCFs) is analyzed numerically using the finite-element method. Statistical correlations between the birefringence and the various parameters are obtained. We found that the complex elliptical air hole is better than that of a circular one to obtain high birefringence in photonic crystal fibers. Our suggested structures can considerably enhance the birefringence in EHPCFs and show that the birefringence can be as high as 1.1294 × 10 2 , which is higher than the birefringence obtained from conventional step-index fiber (5 × 10−4), circular air holes PCF ( 3.7 × 10 3 ) , and elliptical hollow PCF (2.35 × 10−3).

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 24, 2007
Revised Manuscript: March 11, 2007
Manuscript Accepted: March 12, 2007
Published: July 9, 2007

Yuh-Sien Sun, Yuan-Fong Chau, Han-Hsuan Yeh, Lin-Fang Shen, Tzong-Jer Yang, and Din Ping Tsai, "High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding," Appl. Opt. 46, 5276-5281 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. A. M. Zheltikov, "Holey fibers," Phys. Usp. 170, 1203-1215 (2000). [CrossRef]
  3. P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides-I: summary of results," IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975). [CrossRef]
  4. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  5. C. J. S. de Matos and J. R. Taylor, "Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40 pulse compression using air-core fiber and conventional erbium-doped fiber amplifier," Opt. Express 12, 405-409 (2004). [CrossRef] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002). [CrossRef] [PubMed]
  7. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986). [CrossRef]
  8. M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001). [CrossRef]
  9. K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002). [CrossRef]
  10. A. Hochman and Y. Leviatan, "Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins," Opt. Express 13, 6194-6201 (2005). [CrossRef]
  11. R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984). [CrossRef]
  12. M. Nakazawa, "Highly efficient Raman amplification in a polarization-preserving optical fiber," Appl. Phys. Lett. 46, 628-630 (1985). [CrossRef]
  13. R. B. Dyott, J. R. Cozens, and D. G. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979). [CrossRef]
  14. Z. Zhu and T. G. Brown, "Stress-induced birefringence in microstructured optical fibers," Opt. Lett. 28, 2306-2308 (2003). [CrossRef] [PubMed]
  15. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981). [CrossRef]
  16. K. Saitoh, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 18, 1243-1245 (2006). [CrossRef]
  17. L. Poti and A. Bogoni, "Experimental demonstration of a PMD compensator with a step control algorithm," IEEE Photon. Technol. Lett. 13, 1367-1369 (2001). [CrossRef]
  18. I. K. Hwang and Y. H. Lee, "High birefringence in elliptical hollow optical fiber," Opt. Express 12, 1916-1923 (2004). [CrossRef] [PubMed]
  19. X. Yu, M. Yan, L. W. Luo, and P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical claddrods," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003). [CrossRef]
  20. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett. 32, 469-471 (2007). [CrossRef] [PubMed]
  21. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002). [CrossRef]
  22. N. A. Issa, M. A. Van-Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004). [CrossRef] [PubMed]
  23. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001). [CrossRef]
  24. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1314-1319 (2002). [PubMed]
  25. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000). [CrossRef]
  26. J. C. Knight, T. A. Birks, P. St. J. Ressel, and D. M. Atkin, "All-sillica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  27. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  28. A. Betourne, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm," Opt. Express 15, 316-324 (2007). [CrossRef] [PubMed]
  29. Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, "Versatile control of geometric birefringence in elliptical hollow optical fiber," Opt. Lett. 31, 2681-2683 (2006). [CrossRef] [PubMed]
  30. B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, "Use of highly elliptical core fibers for two-mode fiber devices," Opt. Lett. 12, 729-731 (1987). [CrossRef] [PubMed]
  31. J. N. Blake, B. Y. Kim, and H. J. Shaw, "Fiber-optic modal coupler using periodic microbending," Opt. Lett. 11, 177-179 (1986). [CrossRef] [PubMed]
  32. W. V. Sorin, B. Y. Kim, and H. J. Shaw, "Highly selective evanescent modal filter for two-mode optical fibers," Opt. Lett. 11, 581-583 (1986). [CrossRef] [PubMed]
  33. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986). [CrossRef] [PubMed]
  34. A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994). [CrossRef]
  35. S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber tunable and laser based on two-mode fiber," Opt. Lett. 21, 27-29 (1996). [CrossRef] [PubMed]
  36. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, "All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers," J. Lightwave Technol. 20, 1864-1868 (2002). [CrossRef]
  37. J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett. 12, 732-734 (1987). [CrossRef] [PubMed]
  38. S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990). [CrossRef]
  39. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited