OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5352–5367

Edge detection methods applied to the analysis of spherical raindrop images

J. R. Saylor and N. A. Sivasubramanian  »View Author Affiliations


Applied Optics, Vol. 46, Issue 22, pp. 5352-5367 (2007)
http://dx.doi.org/10.1364/AO.46.005352


View Full Text Article

Enhanced HTML    Acrobat PDF (1920 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical imaging of raindrops provides important information on the statistical distribution of raindrop size and raindrop shape. These distributions are critical for extracting rainfall rates from both dual- and single-polarization radar signals. A large number of raindrop images are required to obtain these statistics, necessitating automatic processing of the imagery. The accuracy of the measured drop size depends critically on the characteristics of the digital image processing algorithm used to identify and size the drop. Additionally, the algorithm partially determines the effective depth of field of the camera∕image processing system. Because a large number of drop images are required to obtain accurate statistics, a large depth of field is needed, which tends to increase errors in drop size measurement. This trade-off between accuracy and depth of field ( d o f ) is also affected by the algorithm used to identify the drop outline. In this paper, eight edge detection algorithms are investigated and compared to determine which is best suited for accurately extracting the drop outline and measuring the diameter of an imaged raindrop while maintaining a relatively large depth of field. The algorithm which overall gave the largest d o f along with the most accurate estimate of the size of the drop was the Hueckel algorithm [J. Assoc. Comput. Mach. 20, 634 (1973)].

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3920) Atmospheric and oceanic optics : Meteorology
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(100.2980) Image processing : Image enhancement
(100.5010) Image processing : Pattern recognition

ToC Category:
Image Processing

History
Original Manuscript: December 8, 2006
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 30, 2007
Published: July 23, 2007

Citation
J. R. Saylor and N. A. Sivasubramanian, "Edge detection methods applied to the analysis of spherical raindrop images," Appl. Opt. 46, 5352-5367 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-22-5352


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Doviak and D. S. Zrnić, Doppler Radar and Weather Observations (Academic, 1984).
  2. V. N. Bringi and V. Chandrasekar, Polarimetric Doppler Weather Radar (Cambridge U. Press, 2001).
  3. P. Meischner, Weather Radar (Springer, 2004).
  4. K. V. Beard, "Oscillation models for predicting raindrop axis and backscatter ratios," Radio Sci. 19, 67-74 (1984). [CrossRef]
  5. K. V. Beard and C. Chuang, "A new model for the equilibrium shape of raindrops," J. Atmos. Sci. 44, 1509-1524 (1987). [CrossRef]
  6. K. V. Beard, R. J. Kubesh, and H. T. Ochs, "Laboratory measurements of small raindrop distortion, Pt. 1: axis ratios and fall behavior," J. Atmos. Sci. 48, 698-710 (1991). [CrossRef]
  7. K. V. Beard and R. J. Kubesh, "Laboratory measurements of small raindrop distortion. Pt. 2: oscillation frequencies and modes," J. Atmos. Sci. 48, 2245-2264 (1991). [CrossRef]
  8. K. Andsager, K. V. Beard, and N. F. Laird, "Laboratory measurements of axis ratios for large raindrops," J. Atmos. Sci. 56, 2673-2683 (1999). [CrossRef]
  9. K. V. Beard and A. Tokay, "A field study of raindrop oscillations: observations of size spectra and evaluation of oscillation causes," Geophys. Res. Lett. 18, 2257-2260 (1991). [CrossRef]
  10. J. Joss and A. Waldvogel, "A raindrop spectrograph with automatic analysis," Pure Appl. Geophys. 68, 240-246 (1967). [CrossRef]
  11. J. Joss and A. Waldvogel, "Comments on 'Some observations on the Joss-Waldvogel rainfall disdrometer'," J. Appl. Meteorol. 16, 112-113 (1977). [CrossRef]
  12. A. Tokay, A. Kruger, and W. F. Krajewski, "Comparison of drop size distribution measurements by impact and optical disdrometers," J. Appl. Meteorol. 40, 2083-2097 (2001). [CrossRef]
  13. D. Hauser, P. Amayenc, and B. Nutten, "A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions," J. Atmos. Ocean. Technol. 1, 256-269 (1984). [CrossRef]
  14. M. Löffler-Mang and J. Joss, "An optical disdrometer for measuring size and velocity of hydrometeors," J. Atmos. Ocean. Technol. 17, 130-139 (2000). [CrossRef]
  15. G. Donnadieu, "Mesure de la vitesse terminale des gouttes du pluie au sol à l'aide du spectropluviomètre VIDIAZ," J. Rech. Atmos. 12, 245-259 (1978).
  16. G. Donnadieu, "Comparison of results obtained with the VIDIAZ spectropluviometer and the Joss-Waldvogel rainfall disdrometer in a 'rain of a thundery type'," J. Appl. Meteorol. 19, 593-597 (1980). [CrossRef]
  17. M. Grossklaus, K. Uhlig, and L. Hasse, "An optical disdrometer for use in high wind speeds," J. Atmos. Ocean. Technol. 15, 1051-1059 (1998). [CrossRef]
  18. J.-Y. Delahaye, L. Barthès, P. Golé, J. Lavergnat, and J. P. Vinson, "A dual-beam spectropluviometer concept," J. Hydrol. 328, 110-120 (2006). [CrossRef]
  19. S. Borrmann and R. Jaenicke, "Application of microholography for ground-based in situ measurements in stratus cloud layers: a case study," J. Atmos. Ocean. Technol. 10, 277-293 (1993). [CrossRef]
  20. M. Schönhuber, H. E. Urban, J. P. V. Poiares-Baptista, W. L. Randeu, and W. Riedler, "Measurements of precipitation characteristics by a new distrometer," in Proceedings of Atmospheric Physics and Dynamics in the Analysis and Prognosis of Precipitation Fields (SIMA, 1994).
  21. T. J. Schuur and A. V. Rhyzhkov, "Drop size distributions measured by a 2D video disdrometer: comparison with dual-polarization radar data," J. App. Meteorol. 40, 1019-1034 (2001). [CrossRef]
  22. A. Kruger and W. F. Krajewski, "Two-dimensional video disdrometer: a description," J. Atmos. Ocean. Technol. 19, 602-617 (2002). [CrossRef]
  23. V. Nĕspor, W. F. Krajewski, and A. Kruger, "Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer," J. Atmos. Ocean. Technol. 17, 1483-1492 (2000). [CrossRef]
  24. R. G. Knollenberg, "The optical array: an alternative to scattering or extinction for airborne particle size determination," J. Appl. Meteorol. 9, 86-103 (1970). [CrossRef]
  25. R. G. Knollenberg, Clouds: Their Formation, Optical Properties, and Effects (Academic, 1981), pp. 15-89.
  26. T. W. Cannon, "Imaging devices," Atmos. Technol. 8, 32-37 (1976).
  27. R. A. Black and J. Hallett, "Observations of the distribution of ice in hurricanes," J. Atmos. Sci. 43, 802-822 (1986). [CrossRef]
  28. G. Frank, T. Härtl, and J. Tschiersch, "The pluviospectrometer: classification of falling hydrometeors via digital image processing," Atmos. Res. 34, 367-378 (1994). [CrossRef]
  29. L. Bliven (personal communication, 2001).
  30. J. R. Saylor, B. K. Jones, and L. F. Bliven, "Single-camera method to determine the optical axis position of ellipsoidal drops," Appl. Opt. 42, 972-978 (2003). [CrossRef] [PubMed]
  31. J. R. Saylor, B. K. Jones, and L. F. Bliven, "A method for increasing depth of field during droplet imaging," Rev. Sci. Instrum. 73, 2422-2427 (2002). [CrossRef]
  32. K. S. Fu and J. K. Mui, "A survey on image segmentation," Pattern Recogn. 13, 3-16 (1981). [CrossRef]
  33. K. R. Castleman, Digital Image Processing (Prentice Hall, 1996).
  34. D. D. Saxena and J. R. Saylor, "Use of thresholding algorithms in the processing of raindrop imagery," Appl. Opt. 45, 2672-2688 (2006). [CrossRef] [PubMed]
  35. N. A. Sivasubramanian and J. R. Saylor, "Application of a histogram modification algorithm to thresholding of raindrop images," submitted to Opt. Eng.
  36. T. Peli and D. Malah, "A study of edge detection algorithms," Computer Graph. Image Process. 20, 1-21 (1982). [CrossRef]
  37. L. G. Roberts, "Machine perception of three-dimensional solids," in Optical and Electro-optical Information Processing, J. T. Tippet, D. A. Berkowitz, L. C. Clapp, C. J. Koester and A. Vanderburgh, eds. (MIT Press, 1965), pp. 159-197.
  38. J. H. G. Hale, "Dectection of elementary features in a picture by non-linear local numerical processing," in Proceedings of the 3rd International Joint Conference on Pattern Recognition (1976), pp. 764-768.
  39. A. Rosenfeld, "A nonlinear edge detection technique," Proc. IEEE 58, 814-816 (1970). [CrossRef]
  40. A. Rosenfeld and M. Thurston, "Edge and curve detection for visual scene analysis," IEEE Trans. Comput. C-20, 562-569 (1971). [CrossRef]
  41. A. Rosenfeld, M. Thurston, and Y.-H. Lee, "Edge and curve detection: further experiments," IEEE Trans. Comput. C-21, 677-715 (1972). [CrossRef]
  42. G. B. Shaw, "Local and regional edge detectors: some comparisons," Computer Graph. Image Process. 9, 135-149 (1979). [CrossRef]
  43. I. E. Sobel, Camera Models and Machine Perception (Stanford U. Press, 1970).
  44. L. Mero and Z. Vassy, "A simplified and fast version of the Hueckel operator for finding optimal edges in pictures," in Proceedings of the 4th International Joint Conference on Artificial Intelligence (ASCE, 1975), pp. 650-655.
  45. R. A. Hummel, "Edge detection using basis functions," Technical Report TR-569 (University of Maryland, 1977).
  46. M. H. Hueckel, "An operator which locates edges in digitized pictures," J. Assoc. Comput. Mach. 18, 113-125 (1971). [CrossRef]
  47. M. H. Hueckel, "A local visual operator which recognizes edges and lines," J. Assoc. Comput. Mach. 20, 634-647 (1973). [CrossRef]
  48. M. C. Shin, D. B. Goldgof, K. W. Bowyer, and S. Nikiforou, "Comparison of edge detection algorithms using a structure from motion task," IEEE Trans. Syst. Man Cybern. 31, 589-601 (2001). [CrossRef]
  49. M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, "Robust anisotropic diffusion," IEEE Trans. Image Process. 7, 421-432 (1998). [CrossRef]
  50. F. Bergholm, "Edge focussing," IEEE Trans. Pattern Anal. Mach. Intell. 9, 726-741 (1987). [CrossRef] [PubMed]
  51. J. Canny, "A. computational approach to edge detection," IEEE Trans. Pattern Anal. Mach. Intell. 8, 679-698 (1986). [CrossRef] [PubMed]
  52. L. Rosenthaler, F. Heitger, O. Kübler, and R. von der Heydt, "Detection of general edges and keypoints," in Proceedings of the European Conference on Computer Vision, (1992), pp. 78-86.
  53. C. A. Rothwell, J. L. Mundy, W. Hoffman, and V.-D. Nguyen, "Driving vision by topology," in IEEE International Symposium on Computer Vision (IEEE, 1995), pp. 395-400.
  54. S. Y. Sarkar and K. L. Boyer, "Optimal infinite impulse response zero crossing based edge detectors," Comput. Vision Graph. Image Process. 54, 224-243 (1991).
  55. S. M. Smith and J. M. Brady, "SUSAN--A new approach to low level image processing," Int. J. Comput. Vision 23, 45-78 (1997). [CrossRef]
  56. M. D. Heath, S. Sarkar, T. Sanocki, and K. W. Bowyer, "Comparison of edge detectors, a methodology and initial study," Comput. Vison Image Understand. 69, 38-54 (1998). [CrossRef]
  57. V. S. Nalwa and T. O. Binford, "On detecting edges," IEEE Trans. Pattern Anal. Mach. Intell. 8, 699-714 (1986). [CrossRef] [PubMed]
  58. J. R. Fram and E. S. Deutsch, "On the quantitative evaluation of edge detection schemes and their comparison with human performance," IEEE Trans. Comput. 24, 616-628 (1975). [CrossRef]
  59. I. D. G. Macleod, "On finding structure in pictures," in Picture Language Machines, S. Kaneff, ed. (Academic, 1970), pp. 231-256.
  60. I. D. G. Macleod, "Comments on techniques of edge detection," Proc. IEEE 60, 344 (1972). [CrossRef]
  61. K. C. Hayes and A. Rosenfeld, "Efficient edge detectors and applications," Technical Report TR-207 (University of Maryland, 1972).
  62. I. E. Abdou and W. Pratt, "Quantitative design and evaluation of enhancement/thresholding edge detectors," Proc. IEEE 67, 753-763 (1979). [CrossRef]
  63. J. M. S. Prewitt, "Object enhancement and extraction," in Picture Processing and Psychopictorics, B. S. Lipkin and A. Rosenfeld, eds. (Academic, 1970).
  64. R. Kirsch, "Computer determination of the consitituent structure of biological images," Comput. Biomed. Res. 4, 315-328 (1971). [CrossRef] [PubMed]
  65. R. Nevatia, "Evaluation of a simplified Hueckel edge-line detector," Comput. Graph. Image Process. 6, 582-588 (1977). [CrossRef]
  66. M. Sonka, V. Hlavac, and R. Boyle, Image Processing Analysis and Machine Vision (Thomson-Engineering, 1999).
  67. D. Vernon, Machine Vision (Prentice Hall, 1991).
  68. E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision (Prentice Hall, 1998).
  69. J. Lucas, F. Smektala, and J. L. Adam, "Fluorine in optics," J. Fluorine Chem. 114, 113-118 (2002). [CrossRef]
  70. S. Peleg, "Iterative histogram modification, 2," IEEE Trans. Syst. Man Cybern. 8, 555-556 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited