OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5419–5429

Phase-shifting real-time holographic interferometry applied to load transmission evaluation in dried human skull

Marcos R. R. Gesualdi, Matsuyoshi Mori, Mikiya Muramatsu, Edson A. Liberti, and Egberto Munin  »View Author Affiliations


Applied Optics, Vol. 46, Issue 22, pp. 5419-5429 (2007)
http://dx.doi.org/10.1364/AO.46.005419


View Full Text Article

Enhanced HTML    Acrobat PDF (6373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase-shifting real-time holography with photorefractive Bi 12 SiO 20 crystal as holographic recording medium applied to load transmission evaluation and tension dissipation on a dried human skull under loading is presented. The applied loading stands as a simulation of isolated contraction (SIC) of some masticatories muscles. The four-frames phase-shifting technique and the unwrapping branch-cut technique were used to obtain the phase map. The quantitative results show the feasibility of the employed system in the study of microdisplacements in the skull structure provided by SIC.

© 2007 Optical Society of America

OCIS Codes
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(160.5320) Materials : Photorefractive materials
(170.1850) Medical optics and biotechnology : Dentistry
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Holography

History
Original Manuscript: December 11, 2006
Revised Manuscript: March 19, 2007
Manuscript Accepted: May 26, 2007
Published: July 23, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Marcos R. R. Gesualdi, Matsuyoshi Mori, Mikiya Muramatsu, Edson A. Liberti, and Egberto Munin, "Phase-shifting real-time holographic interferometry applied to load transmission evaluation in dried human skull," Appl. Opt. 46, 5419-5429 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-22-5419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Sicher and J. Tandler, Dentistry Anatomy (Labor, Barcelona, 1930).
  2. I. Testud and O. Jacob, Anatomia Topografica con Aplicaciones Medicoquirurgicas (Salvat Editores, Barcelona, 1956).
  3. A. D. Dixon, D. A. N. Hoyte, and O. Ronning, Fundamentals of Craniofacial Growth (CRC Press, Boca Raton, 1997).
  4. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  5. J. Woisetschlager, D. B. Sheffer, C. W. Loughry, K. Somasundaram, S. K. Chawla, and P. J. Wesolowski, "Phase-shifting holographic interferometry for breast cancer detection," Appl. Opt. 33, 5011-5015 (1994). [CrossRef] [PubMed]
  6. A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993). [PubMed]
  7. B. Ovryn, "Holographic interferometry," Crit. Rev. Biomed. Eng. 16, 269-322 (1989). [PubMed]
  8. R. J. Pryputniewicz, "Holographic determination of rigid-body motions, and application of the method to orthodontics," Appl. Opt. 18, 1442-1446 (1979). [CrossRef] [PubMed]
  9. R. F. Spetzles and H. Spetzler, "Holographic interferometry applied to the study of the human skull," J. Neurosurg. 52, 825-828 (1980). [CrossRef]
  10. A. Zentner, H. G. Sergi, and G. Filippidis, "A holographic study of variations in bone deformations resulting from different headgear forces in a maceretad human skull," Angle Orthod. 66, 463-472 (1996). [PubMed]
  11. D. Pavlin and D. Vukicevic, "Mechanical reactions of facial skeleton to maxillary expansion determined by laser holography," Am. J. Orthod. 85, 498-502 (1984). [CrossRef] [PubMed]
  12. K. G. Lee, Y. K. Park, and D. J. Rudolph, "A study of holographic interferometry on the initial reaction of maxillofacial complex during protraction," Am. J. Orthod. Dentofacial Orthop. 111, 623-632 (1997). [CrossRef] [PubMed]
  13. S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000). [CrossRef] [PubMed]
  14. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  15. P. Gunter and J. P. Huinard, "Photorefractive effects and materials I," in Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer, Berlin, 1988).
  16. E. A. Barbosa and M. Muramatsu, "Mapping of vibration amplitudes by time average holography in Bi12SiO220 crystals," Opt. Laser Technol. 29, 359-364 (1997). [CrossRef]
  17. K. Creath, "Phase-measurements interferometry techniques," in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1998), pp. 350-393.
  18. M. P. Georges and Ph. C. Lemaire, "Phase-shifting real-time holographic interferometry that uses bismuth silicon oxide crystals," Appl. Opt. 34, 7497-7506 (1995). [CrossRef] [PubMed]
  19. M. P. Georges and Ph. C. Lemaire, "Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-256 (1997). [CrossRef]
  20. M. P. Georges and Ph. C. Lemaire, "Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects," Appl. Phys. B 68, 1073-1083 (1999). [CrossRef]
  21. M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, "Compact holographic camera based on photorefractive crystals and applications in interferometry," Opt. Mater. 18, 49-54 (2001). [CrossRef]
  22. M. Weber, F. Rickermann, and G. von Bally, "Realization of a double-exposure interferometer with photorefractive crystals for biomedical applications," in Optics within Live Science (OWLS V), C. Fotakis, T. G. Papazoglou, and C. Kapouzos, eds. (Elsevier, Berlin, 1999), pp. 312-315.
  23. D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, "Phase shifting holographic double exposure interferometry with fast photorefractive crystals," Opt. Commun. 134, 310-316 (1997). [CrossRef]
  24. D. Dirksen and G. von Bally, "Holographic double exposure interferometry in near realtime with photorefractive crystals," J. Opt. Soc. Am. B 11, 1858-1863 (1994). [CrossRef]
  25. E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, "Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers," J. Opt. Soc. Am. A 22, 2872-2879 (2005). [CrossRef]
  26. M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique," Opt. Laser Eng . 44, 56-67 (2006). [CrossRef]
  27. M. R. R. Gesualdi, E. A. Barbosa, and M. Muramatsu, "Advances in phase-stepping real-time holography using photorefractive sillenite crystals," J. Optoelectron. Adv. Mater. 8, 1574-1583 (2006).
  28. M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Surface contouring by phase-shifting real-time holography using photorefractive sillenite crystals," Opt. Laser Technol. 39, 98-104 (2007). [CrossRef]
  29. J. Burke and H. Helmers, "Matched data storage in ESPI by combination of spatial phase shifting with temporal phase unwrapping," Opt. Laser Technol. 32, 235-240 (2000). [CrossRef]
  30. B. Kemper, J. Kandulla, D. Dirksen, and G. von Bally, "Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry," Opt. Commun. 217, 151-160 (2003). [CrossRef]
  31. U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  32. S. Schedin, G. Pedrini, and H. J. Tiziani, "Pulsed digital holography for deformation measurements on biological tissues," Appl. Opt. 39, 2853-2857 (2000). [CrossRef]
  33. A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985). [CrossRef]
  34. T. R. Judge and P. J. Bryanston-Cross, "A review of phase unwrapping techniques in fringe analysis," Opt. Lasers Eng. 24, 199-239 (1994). [CrossRef]
  35. J. Strand and T. Taxt, "Performance evaluation of two-dimensional phase unwrapping algorithms," Appl. Opt. 38, 4333-4344 (1999). [CrossRef]
  36. B. Gutmann and H. Weber, "Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing," Appl. Opt. 38, 5577-5593 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited