OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5461–5470

Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system

Bhargab Das, Joby Joseph, and Kehar Singh  »View Author Affiliations


Applied Optics, Vol. 46, Issue 22, pp. 5461-5470 (2007)
http://dx.doi.org/10.1364/AO.46.005461


View Full Text Article

Enhanced HTML    Acrobat PDF (2570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the methods for smoothing the high intensity dc peak in the Fourier spectrum for reducing the reconstruction error in a Fourier transform volume holographic data storage system is to record holograms some distance away from or in front of the Fourier plane. We present the results of our investigation on the performance of such a defocused holographic data storage system in terms of bit-error rate and content search capability. We have evaluated the relevant recording geometry through numerical simulation, by obtaining the intensity distribution at the output detector plane. This has been done by studying the bit-error rate and the content search capability as a function of the aperture size and position of the recording material away from the Fourier plane.

© 2007 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(200.4540) Optics in computing : Optical content addressable memory processors
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Optical Data Storage

History
Original Manuscript: February 20, 2007
Revised Manuscript: May 5, 2007
Manuscript Accepted: May 30, 2007
Published: July 23, 2007

Citation
Bhargab Das, Joby Joseph, and Kehar Singh, "Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system," Appl. Opt. 46, 5461-5470 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-22-5461


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995). [CrossRef]
  2. J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265, 749-752 (1994). [CrossRef] [PubMed]
  3. G. W. Burr, F. H. Mok, and D. Psaltis, "Storage of 10,000 holograms in LiNbO3:Fe," in Conference on Lasers and Electro-optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, 1994), paper CMB7.
  4. X. An, D. Psaltis, and G. W. Burr, "Thermal fixing of 10,000 holograms in LiNbO3: Fe," Appl. Opt. 38, 386-393 (1999). [CrossRef]
  5. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M. P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, "Pixel-matched holographic data storage with megabit pages," Opt. Lett. 22, 1509-1511 (1997). [CrossRef]
  6. H. J. Coufal, D. Psaltis, and G. T. Sincerbox eds., Holographic Data Storage (Springer-Verlag, 2000).
  7. G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999). [CrossRef]
  8. F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000). [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  10. C. B. Burckhardt, "Use of random phase mask for recording of Fourier transform holograms of data masks," Appl. Opt. 9, 695-700 (1970). [CrossRef] [PubMed]
  11. Y. Takeda, Y. Oshida, and Y. Miyamura, "Random phase shifters for Fourier transformed holograms," Appl. Opt. 11, 818-822 (1972). [CrossRef] [PubMed]
  12. Q. Gao and R. Kostuk, "Improvement to holographic digital data-storage systems with random and pseudorandom phase masks," Appl. Opt. 36, 4853-4861 (1997). [CrossRef] [PubMed]
  13. M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, "Effects of multilevel phase masks on interpixel cross talk in digital holographic storage," Appl. Opt. 36, 3107-3115 (1997). [CrossRef] [PubMed]
  14. M. P. Bernal, G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, and M. Quintanilla, "Experimental study of the effects of a six-level phase mask on a digital holographic storage system," Appl. Opt. 37, 2094-2101 (1998). [CrossRef]
  15. R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, "Beam conditioning techniques for holographic recording systems," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259-269.
  16. R. John, J. Joseph, and K. Singh, "Holographic digital data storage using phase-modulated pixels," Opt. Lasers Eng. 43, 183-194 (2005). [CrossRef]
  17. G. Goldmann, "Recording of digital data in quasi Fourier holograms," Optik 34, 254-267 (1971).
  18. M. P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, "Balancing interpixel cross talk and detector noise to optimize areal density in holographic data storage systems," Appl. Opt. 37, 5377-5385 (1998). [CrossRef]
  19. R. John, J. Joseph, and K. Singh, "Phase-image based content-addressable holographic data storage," Opt. Commun. 232, 99-106 (2004). [CrossRef]
  20. R. John, "Investigations on content-addressable holographic memories and optical data security," Ph. D. dissertation (IIT Delhi, India, 2006).
  21. J. Joseph and D. A. Waldman, "Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image," Appl. Opt. 45, 6374-6380 (2006). [CrossRef] [PubMed]
  22. M. Levene, G. J. Steckman, and D. Psaltis, "Method for controlling the shift invariance of optical correlators," Appl. Opt. 38, 394-398 (1999). [CrossRef]
  23. C. Gu, H. Fu, and J-R. Lien, "Correlation patterns and cross-talk noise in volume holographic optical correlators," J. Opt. Soc. Am. A 12, 861-868 (1995). [CrossRef]
  24. M. J. O'Callaghan, "Sorting through the lore of phase mask options: performance measures and practical commercial designs," Proc. SPIE 5362, 150-159 (2004). [CrossRef]
  25. J. T. Gallo, M. L. Jones, and C. M. Verber, "Computer modeling of the effects of apertures in the Fourier-transform plane of Fourier-transform imaging systems," Appl. Opt. 33, 2891-2899 (1994). [CrossRef] [PubMed]
  26. P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000). [CrossRef]
  27. L. Menetrier and G. W. Burr, "Density implications of shift compensation post processing in holographic storage systems," Appl. Opt. 42, 845-860 (2003). [CrossRef] [PubMed]
  28. A. Sütő and E. Lőrincz, "Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding," Optik 115, 541-546 (2004). [CrossRef]
  29. P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lőrincz, "System modeling and optimization of Fourier holographic memory," Appl. Opt. 44, 3024-3031 (2005). [CrossRef] [PubMed]
  30. J. A. Hoffnagle and C. M. Jefferson, "Bit error rate for holographic data storage," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 91-100.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited