OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5500–5515

Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots

Shai N. Shafrir, John C. Lambropoulos, and Stephen D. Jacobs  »View Author Affiliations

Applied Optics, Vol. 46, Issue 22, pp. 5500-5515 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (4808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride ( Al 23 O 27 N 5 ∕ALON), polycrystalline alumina ( Al 2 O 3 ∕PCA), and chemical vapor deposited (CVD) silicon carbide ( Si 4 C / SiC ) . Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface microroughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in the first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these hard ceramics with the use of power spectral density to characterize surface features.

© 2007 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 27, 2007
Manuscript Accepted: April 14, 2007
Published: July 23, 2007

Shai N. Shafrir, John C. Lambropoulos, and Stephen D. Jacobs, "Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots," Appl. Opt. 46, 5500-5515 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004). [CrossRef]
  2. S. Malkin and T. W. Hwang, "Grinding mechanisms for ceramics," Anal. CIRP 45, 569-580 (1996). [CrossRef]
  3. B. Lin, S. Y. Yu, B. Lin, and A. B. Yu, "Study of the formation and propagation conditions of grinding crack for ceramics," Key Eng. Mater. 202-203, 121-126 (2001). [CrossRef]
  4. A. G. Evans and D. B. Marshall, "Wear mechanisms in ceramics," in Fundamentals of Friction and Wear of Materials, D. A. Rigney, ed. (American Society for Metals, 1981), pp. 439-452.
  5. J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005). [CrossRef]
  6. J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, "Material removal mechanisms from grinding to polishing," in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), pp. 113-128.
  7. K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, "Non-destructive, real time direct measurement of subsurface damage," Proc. SPIE 5999, 105-110 (2005). [CrossRef]
  8. J. Wang and R. L. Maier, "Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angel technique," Appl. Opt. 45, 5621-5628 (2006). [CrossRef] [PubMed]
  9. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).
  10. W. Kanematsu, "Visualization of subsurface damage in silicon nitride from grinding by a plasma etching and dye impregnation method," J. Am. Ceram. Soc. 89, 2564-2570 (2006). [CrossRef]
  11. B. Zhang and T. D. Howes, "Material-removal mechanisms in grinding ceramics," Anal. CIRP 43, 305-308 (1994). [CrossRef]
  12. B. Zhang and T. D. Howes, "Subsurface evaluation of ground ceramics," Anal. CIRP 44, 263-266 (1995). [CrossRef]
  13. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, "Subsurface damage in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005). [CrossRef] [PubMed]
  14. H. H. K. Xu, S. Jahanmir, and Y. Wang, "Effect of grain size on scratch linteractions and material removal in alumina," J. Am. Ceram. Soc. 78, 881-891 (1995). [CrossRef]
  15. J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).
  16. F. W. Preston, "The stracture of abraded glass surfaces," Trans. Opt. Soc. 23, 141-164 (1922). [CrossRef]
  17. F. K. Aleinikov, "The influence of abrasive powder microhardness on the values of the coefficients of volume removal," Sov. Phys. Tech. Phys. 2, 505-511 (1957).
  18. P. P. Hed and D. F. Edwards, "Optical glass fabrication technology. 2: relationship between surface roughness and subsurface damage," Appl. Opt. 26, 4677-4680 (1987). [CrossRef] [PubMed]
  19. J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, "Noncontact estimate of grinding-induced subsurface damage," Proc. SPIE 3782, 41-50 (1999). [CrossRef]
  20. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides," Precis. Eng. 31, 83-93 (2007). [CrossRef]
  21. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "Toward magnetorheological finishing of magnetic materials (technical brief)," J. Manuf. Sci. Eng. (to be published).
  22. J. C. Lambropoulos, "From abrasive size to subsurface damage in grinding," in Optical Fabrication and Testing, Postconference Digest, Vol. 42 of OSA trends in Optics and Photonics (Optical Society of America), pp. 17-18.
  23. A. G. Evans, "Fracture toughness: the role of indentation techniques," in Fracture Mechanics Applied to Brittle Materials, S.W.Fierman, ed. (American Society for Testing and Materials, 1979), pp. 112-135. [CrossRef]
  24. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (Wiley, 1997).
  25. OptiPro Systems, SX 50 CNC deterministic microgrinding machine.
  26. OptiPro Systems, SX 150 CNC deterministic microgrinding machine.
  27. Lighthouse Lubricant Solutions, Opticut GPM 5% in water, pH 9-10.
  28. S. D. Jacobs, H. M. Pollicove, W. I. Kordonski, and D. Golini, "Magnetorheological finishing (MRF) in deterministic optics manufacturing," in International Conference on Precision Engineering (ICPE), (Taipei, Taiwan, 1997), pp. 685-690.
  29. A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, "Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing," Appl. Opt. 40, 20-33 (2001). [CrossRef]
  30. QED Technologies, Q22-Y CNC machine.
  31. QED Technologies, D10 MR fluid.
  32. Taylor Hobson, TalySurf 2 PGI profilometer.
  33. Zygo Corp., NewView 5000 noncontact profilometer.
  34. Nano Technology Systems Division Carl Zeiss NTS GmbH, LEO 982 FE SEM.
  35. Veeco Instruments, Dimension 3100S-1 AFM.
  36. Leica Microsystems, Light Microscope.
  37. S. N. Shafrir, "Surface finish and subsurface damage in polycrystalline optical materials," Ph.D. dissertation (University of Rochester, 2007).
  38. S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999). [CrossRef]
  39. J. E. DeGroote, A. E. Marino, K. E. Spencer, and S. D. Jacobs, "Power spectral density plots inside MRF spots made with a polishing abrasive-free MR fluid," Proc. SPIE TD03, 134-138 (2005).
  40. E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002). [CrossRef]
  41. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, "Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components," Appl. Opt. 41, 154-171 (2002). [CrossRef] [PubMed]
  42. C. J. Walsh, A. J. Leistner, and B. F. Oreb, "Power spctral density analysis of optical substrates for gravitational-wave interferometry," Appl. Opt. 38, 4790-4801 (1999). [CrossRef]
  43. L. L. Gregg, A. E. Marino, and S. D. Jacobs, "Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps," Proc. SPIE TD02, 81-83 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited