OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 23 — Aug. 10, 2007
  • pp: 5667–5679

Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays

Joaquín Otón, Pierre Ambs, María S. Millán, and Elisabet Pérez-Cabré  »View Author Affiliations


Applied Optics, Vol. 46, Issue 23, pp. 5667-5679 (2007)
http://dx.doi.org/10.1364/AO.46.005667


View Full Text Article

Enhanced HTML    Acrobat PDF (2780 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The inherent distortion of a reflective parallel aligned spatial light modulator (SLM) may need compensation not only for the backplane curvature but also for other possible nonuniformities caused by thickness variations of the liquid crystal layer across the aperture. First, we build a global look-up table (LUT) of phase modulation versus the addressed gray level for the whole device aperture. Second, when a lack of spatial uniformity is observed, we define a grid of cells onto the SLM aperture and develop a multipoint calibration. The relative phase variations between neighboring cells for a uniform gray level lead us to build a multi-LUT for improved compensation. Multipoint calibration can be done using either phase-shift interferometry or Fourier diffraction pattern analysis of binary phase gratings. Experimental results show the compensation progress in diffractive optical elements displayed on two SLMs.

© 2007 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(220.1000) Optical design and fabrication : Aberration compensation
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

History
Original Manuscript: March 8, 2007
Manuscript Accepted: April 10, 2007
Published: August 8, 2007

Citation
Joaquín Otón, Pierre Ambs, María S. Millán, and Elisabet Pérez-Cabré, "Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays," Appl. Opt. 46, 5667-5679 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-23-5667


Sort:  Year  |  Journal  |  Reset  

References

  1. D. C. O'Brien, R. J. Mears, T. D. Wilkinson, and W. A. Crossland, "Dynamic holographic interconnects that use ferroelectric liquid crystal spatial light modulators," Appl. Opt. 33, 2795-2803 (1994).
  2. D. C. O'Brien, G. E. Faulkner, T. D. Wilkinson, B. Robertson, and D. G. Leyva, "Design and analysis of an adaptive board-to-board dynamic holographic interconnect," Appl. Opt. 43, 3297-3305 (2004). [CrossRef]
  3. J. A. Davis, D. M. Cottrell, R. A. Lilly, and S. W. Connely, "Multiplexed phase-encoded lenses written on spatial light modulators," Opt. Lett. 14, 420-422 (1989).
  4. V. Laude, "Twisted-nematic liquid crystal pixelated active lens," Opt. Commun. 153, 134-152 (1998). [CrossRef]
  5. M. J. Yzuel, J. Campos, A. Marquez, J. C. Escalera, J. A. Davis, C. Lemmi, and S. Ledesma, "Inherent apodization of lenses encoded on liquid crystal spatial light modulators," Appl. Opt. 39, 6034-6039 (2000).
  6. J. Otón, M. S. Millán, and E. Pérez-Cabré, "Programmable lens design in a pixelated screen of twisted-nematic liquid crystal display," Opt. Pura Apl. 38, 47-56 (2005).
  7. J. Campos, A. Marquez, M. J. Yzuel, J. A. Davis, D. M. Cottrell, and I. Moreno, "Fully complex synthetic discriminant functions written onto phase-only modulators," Appl. Opt. 39, 5965-5970 (2000).
  8. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, "Shack-Hartmann multiple-beam optical tweezers," Opt. Express 11, 208-214 (2003).
  9. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
  10. H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, "Applications of SLMs for optical metrology," Proc. SPIE 4457, 72-81 (2001). [CrossRef]
  11. W. Osten, C. Kohler, and J. Liesener, "Evaluation and application of spatial light modulators for optical metrology," Opt. Pura Apl. 38, 71-81 (2005).
  12. A. Michalkiewicz, M. Kujawinska, T. Kozacki, X. Wang, and P. J. Bos, "Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator," Proc. SPIE 5531, 85-94 (2004). [CrossRef]
  13. M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, "3D electronic holography display system using a 100 megapixel spatial light modulator," Proc. SPIE 5249, 297-308 (2004). [CrossRef]
  14. T. Shirai and T. H. Barnes, "Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid crystal device," J. Opt. Soc. Am. A 19, 369-377 (2002).
  15. S. P. Laut, D. U. Bartsch, and W. R. Freeman, "Experimental approach to the characterization of a micromachined continuous-membrane deformable mirror," Proc. SPIE 5169, 95-103 (2003). [CrossRef]
  16. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004). [CrossRef]
  17. A. Márquez, C. Iemmi, J. Campos, J. Escalera, and M. Yzuel, "Programmable apodizer to compensate chromatic aberration effects using a liquid crystal spatial light modulator," Opt. Express 13, 716-730 (2005). [CrossRef]
  18. M. S. Millán, J. Otón, and E. Pérez-Cabré, "Chromatic compensation of programmable Fresnel lenses," Opt. Express 14, 6226-6242 (2006). [CrossRef]
  19. M. S. Millán, J. Otón, and E. Pérez-Cabré, "Dynamic compensation of chromatic aberration in a programmable diffractive lens," Opt. Express 14, 9103-9012 (2006). [CrossRef]
  20. J. Harriman, A. Linnenberger, and S. Serati, "Improving spatial light modulator performance through phase compensation," Proc. SPIE 5553, 58-67 (2004). [CrossRef]
  21. B. E. A. Saleh and K. Lu, "Theory and design of the liquid crystal TV as an optical spatial phase modulator," Opt. Eng. 29, 240-246 (1990). [CrossRef]
  22. C. Soutar and K. Lu, "Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell," Opt. Eng. 33, 2704-2712 (1994). [CrossRef]
  23. J. A. Davis, I. Moreno, and P. Tsai, "Polarization eigenstates for twisted-nematic liquid crystal displays," Appl. Opt. 37, 937-945 (1998).
  24. I. Moreno, J. A. Davis, K. G. D'Nelly, and D. B. Allison, "Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators," Opt. Eng. 37, 3048-3052 (1998). [CrossRef]
  25. J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, "Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators," Opt. Eng. 38, 705-709 (1999). [CrossRef]
  26. A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, "Characterization of edge effects in twisted nematic liquid crystal displays," Opt. Eng. 39, 3301-3307 (2000). [CrossRef]
  27. V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, "Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry," J. Appl. Phys. 97, 043101 (2005). [CrossRef]
  28. D. J. Cho, S. T. Thurman, J. T. Donner, and G. M. Morris, "Characteristics of a 128 × 128 liquid crystal spatial light modulator for wavefront generation," Opt. Lett. 23, 969-971 (1998).
  29. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, "Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display," Appl. Opt. 43, 6278-6284 (2004). [CrossRef]
  30. X. Xun and R. W. Cohn, "Phase calibration of spatially nonuniform spatial light modulators," Appl. Opt. 43, 6400-6406 (2004). [CrossRef]
  31. J. Otón and P. Ambs, "Characterization and applications of a pure phase reflective liquid crystal spatial light modulator," Proc. SPIE 6254, 62540N (2006).
  32. P. Grother and D. Casasent, "Optical path difference measurement technique for SLMs," Opt. Commun. 189, 31-38 (2001). [CrossRef]
  33. J. D. Downie, B. P. Hine, and M. B. Reid, "Effects and correction of magneto-optic spatial light modulator phase errors in an optical correlator," Appl. Opt. 31, 636-643 (1992).
  34. A. J. Bergeron, F. Gauvin, D. Gagnon, H. Gingras, H. H. Arsenault, and M. Doucet, "Phase calibration and applications of a liquid crystal spatial light modulator," Appl. Opt. 34, 5133-5139 (1995).
  35. R. Dou and M. K. Giles, "Simple technique for measuring the phase property of a twisted nematic liquid crystal television," Opt. Eng. 35, 808-812 (1996). [CrossRef]
  36. Holoeye Photonics AG and Holoeye Corporation 〈http://www.holoeye.com〉.
  37. D. Malacara, ed., Optical Shop Testing, 2nd ed. (Wiley, 1992), Chap. 14, p. 501.
  38. Z. Zhang, G. Lu, and F. Yu, "Simple method for measuring phase modulation in liquid crystal television," Opt. Eng. 33, 3018-3022 (1994). [CrossRef]
  39. Boulder Nonlinear Systems 〈http://www.bnonlinear.com〉.
  40. A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics, 3rd ed. (Butterworth-Heinemann, 1998).
  41. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," in Vision Science and Its Applications, Vol. 35 of Trends in Optics and Photonics Series, V. Lakshminarayanan, ed. (Optical Society of America, 2000), 232-244.
  42. B. Kress and P. Meyrueis, Digital Diffractive Optics, an Introduction to Planar Diffractive Optics and Related Technology (Wiley, 2000).
  43. F. Wyrowski and O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography," J. Opt. Soc. Am. A 5, 1058-1065 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited