Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering, Part 1: Collimated laser sheets

Not Accessible

Your library or personal account may give you access

Abstract

Planar nephelometry is a laser-based technique of imaging the light scattered from particles to provide information about the local number density of these particles. In many seeded flows of practical interest, such as pulverized coal flames, particle loadings are sufficiently high for the incident laser beam to be severely attenuated. Measurements in these flows are therefore difficult, and limited data are available under these conditions. Laser attenuation experiments were conducted in suspensions of spherical particles in water at various concentrations. This is used to formulate a calibration for the effects of diffuse scattering and laser sheet extinction. A model for the distribution of light through a heavily seeded, light-scattering medium is also developed and is compared with experimental results. It is demonstrated that the scattered signal may be considered proportional to the local particle concentration multiplied by the incident laser power. The incident laser power varies as a function of the attenuation by obscurement. This correction for planar nephelometry images thus extends the technique to provide pseudoquantitative data for instantaneous particle concentration measurements.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays

Edouard Berrocal, Elias Kristensson, Mattias Richter, Mark Linne, and Marcus Aldén
Opt. Express 16(22) 17870-17881 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.