OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 23 — Aug. 10, 2007
  • pp: 5840–5843

Long-term frequency stabilization of a continuous-wave tunable laser with the help of a precision wavelengthmeter

Sergey Kobtsev, Stepan Kandrushin, and Andrey Potekhin  »View Author Affiliations

Applied Optics, Vol. 46, Issue 23, pp. 5840-5843 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time to our knowledge we experimentally demonstrate an efficient method for the reduction of long-term radiation line drift in single-frequency cw Ti:sapphire and dye lasers that relies on a fast and precise wavelengthmeter together with a digital–analog feedback system. Generation line drift of lasers is reduced approximately by an order of magnitude down to 40 MHz / h , which corresponds to the residual drift in readings of the wavelengthmeter itself. The implemented automatic frequency control system allows us to lock the laser generation frequency to a specified absolute value. This approach may be used in single-frequency lasers of different types (solid-state, fiber, diode, dye lasers, etc.) and allows reduction by an order of magnitude or more of the long-term generation line drift in lasers that are not equipped with other systems for long-term stabilization of output radiation frequency.

© 2007 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.3590) Lasers and laser optics : Lasers, titanium
(140.3600) Lasers and laser optics : Lasers, tunable
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Quantum Optics

Original Manuscript: May 7, 2007
Manuscript Accepted: June 8, 2007
Published: August 9, 2007

Sergey Kobtsev, Stepan Kandrushin, and Andrey Potekhin, "Long-term frequency stabilization of a continuous-wave tunable laser with the help of a precision wavelengthmeter," Appl. Opt. 46, 5840-5843 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. M. Kobtsev, A. V. Korablev, S. V. Kukarin, and V. B. Sorokin, "Efficient autoscanned single-frequency cw dye laser," Proc. SPIE 4353, 189-193 (2001). [CrossRef]
  2. F. N. Timofeev and R. Kashyap, "High-power, ultrastable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser," Opt. Express 11, 515-520 (2003). [CrossRef] [PubMed]
  3. G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, "Frequency stabilization of a diode laser to absorption lines of water vapor in the 944-nm wavelength region," Opt. Eng. 40, 525-528 (2001). [CrossRef]
  4. S. Stry, L. Hildebrandt, and J. Sacher, "Compact tunable external cavity diode laser with diffraction-limited 1 W optical power, and its application in BEC and CRDS," Proc. SPIE 5452, 645-653 (2004). [CrossRef]
  5. H. J. Onisto, R. L. Cavasso-Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, "Frequency doubled and stabilized all-solid-state Ti:sapphire lasers," Opt. Eng. 41, 1122-1127 (2002). [CrossRef]
  6. S. M. Kobtsev, V. I. Baraulya, and V. M. Lunin, "Combined cw single-frequency ring dye/Ti:sapphire laser," Quantum Electron. 36, 1148-1152 (2006). [CrossRef]
  7. K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, "1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser," Opt. Lett. 21, 1999-2001 (1996). [CrossRef] [PubMed]
  8. W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, "A computer-based digital feedback control of frequency drift of multiple lasers," Rev. Sci. Instrum. 69, 3737-3740 (1998). [CrossRef]
  9. P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D 34, 2396-2407 (2001). [CrossRef]
  10. P. Burdack, M. Tröbs, M. Hunnekuhl, C. Fallnich, and I. Freitag, "Modulation-free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer," Opt. Express 12, 644-650 (2004). [CrossRef] [PubMed]
  11. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm," Opt. Commun. 194, 207-211 (2001). [CrossRef]
  12. A. Rossi, V. Biancalana, B. Mai, and L. Tomassetti, "Long-term drift laser frequency stabilization using purely optical reference," Rev. Sci. Instrum. 73, 2544-2548 (2002). [CrossRef]
  13. A. Banerjee, U. D. Rapol, A. Wasan, and V. Natarajan, "High-accuracy wavemeter based on a stabilized diode laser," Appl. Phys. Lett. 79, 2139-2141 (2001). [CrossRef]
  14. "High Precision Wavelength Meters: WS/HighFinesse Angstrom Series," http://www.toptica.de/products/itemlayer/59/wavelengthmeter_2007.pdf.
  15. T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, "Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer," Rev. Sci. Instrum. 75, 3318-3326 (2004). [CrossRef]
  16. I. S. Grigoriev, A. B. Dyachkov, V. A. Kuznetzov, V. P. Labozin, and V. A. Firsov, "Stabilized single-mode dye laser," Proc. SPIE 5121, 411-420 (2003). [CrossRef]
  17. S. M. Kobtsev, V. I. Baraulya, and V. M. Lunin, "Ultra-narrow-linewidth combined cw Ti:sapphire/dye laser for atom cooling and high-precision spectroscopy," Proc. SPIE 6451, 64511U (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited