OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 23 — Aug. 10, 2007
  • pp: 5912–5916

Study of birefringence of elliptical core photonic crystal fiber using Mathieu function

Anshu D. Varshney and R. K. Sinha  »View Author Affiliations

Applied Optics, Vol. 46, Issue 23, pp. 5912-5916 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The birefringence of the elliptical core photonic crystal fiber with circular pores in the cladding has been studied by using higher order Mathieu functions. It is observed that the birefringence decreases with decreasing wavelength. Calculated results also indicate the sensitivity to the radius of the pores in the cladding. High birefringence up to 0.0079 is obtained. The efficacy of this proposed method is proved by comparing the results.

© 2007 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 12, 2007
Revised Manuscript: April 30, 2007
Manuscript Accepted: May 31, 2007
Published: August 9, 2007

Anshu D. Varshney and R. K. Sinha, "Study of birefringence of elliptical core photonic crystal fiber using Mathieu function," Appl. Opt. 46, 5912-5916 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. Broeng, D. Mogilevtsev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: a new class of optical waveguides," Opt. Fiber Technol. 5, 305-330 (1999). [CrossRef]
  2. M. J. Steel and R. M. Osgood, "Polarization and properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-502 (2001). [CrossRef]
  3. A. Ferrando, E. Silvester, J. J. Miret, P. Andres, and M. V. Andres, "Full vector analysis of realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999). [CrossRef]
  4. S. E. Barkou, J. Broeng, and A. Bjarklev, "Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect," Opt. Lett. 24, 46-48 (1999). [CrossRef]
  5. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers: an efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  6. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Localized function method for modeling defect modes in 2-D photonic crystals," J. Lightwave Technol. 17, 2078-2081 (1999). [CrossRef]
  7. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  8. M. Koshiba and K. Saitoh, "Structural dependence of effective area and mode field diameter for holey fibers," Opt. Express 11, 1746-1756 (2003). [CrossRef] [PubMed]
  9. M. Koshiba and K. Saitoh, "Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures," Appl. Opt. 42, 6267-6275 (2003). [CrossRef] [PubMed]
  10. G. E. Town and J. T. Lizer, "Tapered holey fibers for spot-size and numerical aperture conversion," Opt. Lett. 26, 1042-1044 (2001). [CrossRef]
  11. M. Qiu, "Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method," Microw. Opt. Technol. Lett. 30, 327-330 (2001). [CrossRef]
  12. S. K. Varshney, M. P. Singh, and R. K. Sinha, "Propagation characteristics of photonic crystal fibers," J. Opt. Commun. 24, 1-7 (2003).
  13. R. K. Sinha and A. D. Varshney, "Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods," Opt. Quantum Electron. 37, 711-722 (2005). [CrossRef]
  14. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, "Properties of photonic crystal fiber and the effective index model," J. Opt. Soc. Am. A 15, 748-752 (1998). [CrossRef]
  15. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  16. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic bandgap guidance in optical fibers," Science 282, 1476-1479 (1998). [CrossRef] [PubMed]
  17. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000). [CrossRef]
  18. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001). [CrossRef] [PubMed]
  19. A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, "Ultrahigh birefringent nonlinear microstructured fiber," IEEE Photon. Technol. Lett. 16, 1667-1669 (2004). [CrossRef]
  20. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001). [CrossRef]
  21. P. R. Chaudhari, V. Paulose, C. Zhao, and C. Lu, "Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization," IEEE Photon Technol. Lett. 16, 1301-1303 (2004). [CrossRef]
  22. R. K. Sinha and A. D. Varshney, "Modal analysis of highly birefringent elliptical core photonic crystal fibers from scalar and vectorial effective index method," in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, HenryH.Du, ed., 6005, 6005M-1-6005M-6 (SPIE, 2005).
  23. R. B. Dyott, "Elliptical dielectric waveguides," in Elliptical Fiber Waveguides (Artech House, 1995), pp. 37-65.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited