OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 23 — Aug. 10, 2007
  • pp: 5917–5923

Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator

Hidetomo Takahashi, Satoshi Hasegawa, and Yoshio Hayasaki  »View Author Affiliations


Applied Optics, Vol. 46, Issue 23, pp. 5917-5923 (2007)
http://dx.doi.org/10.1364/AO.46.005917


View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic femtosecond laser processing performs high-speed parallel processing using a computer-generated hologram (CGH) displayed on a liquid crystal spatial light modulator. A critical issue is to precisely control the intensities of the diffraction peaks of the CGH. We propose a method of compensating for the spatial frequency response in the design of CGH using the optimal-rotation-angle method. By applying the proposed method, the uniformity of the diffraction peaks was improved. We demonstrate holographic femtosecond laser processing with two-dimensional and three-dimensional parallelism.

© 2007 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.2890) Holography : Holographic optical elements
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Holography

History
Original Manuscript: February 20, 2007
Revised Manuscript: June 4, 2007
Manuscript Accepted: June 26, 2007
Published: August 9, 2007

Citation
Hidetomo Takahashi, Satoshi Hasegawa, and Yoshio Hayasaki, "Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator," Appl. Opt. 46, 5917-5923 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-23-5917


Sort:  Year  |  Journal  |  Reset  

References

  1. D. Du, X. Liu, G. Kom, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994). [CrossRef]
  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, "Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm," Appl. Phys. Lett. 65, 1850-1852 (1994). [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  4. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996). [CrossRef]
  5. E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997). [CrossRef]
  6. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996). [CrossRef] [PubMed]
  7. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997). [CrossRef]
  8. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003). [CrossRef]
  9. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, "Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses," Opt. Lett. 29, 1846-1848 (2004). [CrossRef] [PubMed]
  10. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003). [CrossRef]
  11. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005). [CrossRef]
  12. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, "Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements," Opt. Express 12, 1908-1915 (2004). [CrossRef] [PubMed]
  13. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005). [CrossRef]
  14. S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006). [CrossRef] [PubMed]
  15. N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, "Programmable focal spot shaping of amplified femtosecond laser pulses," Opt. Lett. 30, 1479-1481 (2005). [CrossRef] [PubMed]
  16. N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, "100-kHz diffraction-limited femtosecond laser micromachining," Appl. Phys. B 80, 27-30 (2005). [CrossRef]
  17. G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andrés, "High spatiotemporal resolution in multifocal processing with femtosecond laser pulses," Opt. Lett. 31, 2631-2633 (2006). [CrossRef] [PubMed]
  18. J. Bengtsson, "Kinoform design with an optimal-rotation-angle method," Appl. Opt. 33, 6879-6884 (1994). [CrossRef] [PubMed]
  19. R. Neubecker, G.-L. Oppo, B. Thuering, and T. Tschudi, "Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects," Phys. Rev. A 52, 791-808 (1994). [CrossRef]
  20. Y. Hayasaki, H. Yamamoto, and N. Nishida, "Self-scanning of isolated spots in a nonlinear optical system with two-dimensional feedback," J. Opt. Soc. Am. B 17, 1211-1215 (2000). [CrossRef]
  21. Y. Hayasaki, S. Hara, H. Yamamoto, and N. Nishida, "Spatial and temporal properties of a nonlinear optical feedback system," Opt. Rev. 8, 343-347 (2001). [CrossRef]
  22. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999). [CrossRef]
  23. D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, "Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating," Appl. Phys. A 82, 523-527 (2006). [CrossRef]
  24. D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, "Bump formation on a glass surface with a transparent coating using femtosecond laser processing," Appl. Phys. A 85, 39-43 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited