OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 24 — Aug. 20, 2007
  • pp: 6185–6191

Particle shape as revealed by spectral depolarization

Donald D. Duncan and Michael E. Thomas  »View Author Affiliations


Applied Optics, Vol. 46, Issue 24, pp. 6185-6191 (2007)
http://dx.doi.org/10.1364/AO.46.006185


View Full Text Article

Enhanced HTML    Acrobat PDF (1793 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Through a series of numerical simulations we explore some scatter effects due to nonspherical particles. Specifically, we examine the link between the aspect ratio of randomly oriented, prolate spheroidal particles and the resulting linear depolarization of the scattered light in the forward and backscatter directions. The particular objective is to detect the presence of randomly oriented particles that have a systematic size and aspect ratio. Calculations show that the spectral behavior of the linear depolarization reveals the aspect ratio of the scattering particles. The concept is demonstrated using the size, shape, and refractive index of the spore form of Bacillus globigii (BG).

© 2007 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1310) Scattering : Atmospheric scattering
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: April 6, 2007
Revised Manuscript: June 11, 2007
Manuscript Accepted: June 15, 2007
Published: August 16, 2007

Citation
Donald D. Duncan and Michael E. Thomas, "Particle shape as revealed by spectral depolarization," Appl. Opt. 46, 6185-6191 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-24-6185


Sort:  Year  |  Journal  |  Reset  

References

  1. "Bioterrorism agents/diseases," Department of Health and Human Services, Centers for Disease Control and Prevention, http://www.bt.cdc.gov/Agent/agentlist.asp.
  2. P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Color mixing in wing scales of a butterfly," Nature 404, 457 (2000). [CrossRef] [PubMed]
  3. P. M. Pilarski and C. J. Backhouse, "A method for cytometric image parameterization," Opt. Express 14, 12720-12743 (2006). [CrossRef] [PubMed]
  4. J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, "Application of Mie theory to determine the structure of spheroidal scatterers in biological materials," Opt. Lett. 32, 1326-1328 (2007). [CrossRef] [PubMed]
  5. K. Sassen, "The polarization lidar technique for cloud research: a review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991). [CrossRef]
  6. A. Battaglia, O. Sturniolo, and F. Prodi, "Analysis of polarization radar returns from ice clouds," Atmos. Res. 49-60, 231-250 (2001). [CrossRef]
  7. D. Müeller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, "Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths," Appl. Opt. 37, 2260-2263 (1998). [CrossRef]
  8. L. Kolokolova, M. S. Hanner, A.-C. Levasseur-Regourd, and B. Å. S. Gustafson, "Physical properties of cometary dust from light scattering and thermal emission," in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver, eds. (University of Arizona Press, 2004).
  9. D. Guirado, J. W. Hovenier, and F. Moreno, "Circular polarization of light scattered by asymmetrical particles," J. Quant. Spectrosc. Radiat. Transfer 106, 63-73 (2007). [CrossRef]
  10. W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kolkson, "Application of polarization effects in light scattering: a new biophysical tool," Proc. Natl. Acad. Sci. U.S.A. 73, 486-490 (1976). [CrossRef] [PubMed]
  11. S. Asano, "Light scattering properties of spheroidal particles," Appl. Opt. 18, 712-723 (1979). [CrossRef] [PubMed]
  12. S. Asano and S. Makoto, "Light scattering by randomly oriented spheroidal particles," Appl. Opt. 19, 962-974 (1980). [CrossRef] [PubMed]
  13. M. I. Mischenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Let. 20, 1356-1359 (1995). [CrossRef]
  14. M. E. Thomas and D. D. Duncan, "Atmospheric transmission," in Atmospheric Propagation of Radiation, Volume 2 of the Infrared & Electro-Optical Systems Handbook, F.G.Smith, ed. (ERIM Infrared Information Analysis Center and SPIE, 1993).
  15. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  16. M. I. Mishchenko and L. D. Travis, "Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transfer 60, 309-324 (1998). [CrossRef]
  17. FORTRAN T-matrix codes publicly available at http://www.giss.nasa.gov/∼crmim.
  18. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, "T-matrix computations of light scattering by red blood cells," Appl. Opt. 37, 2735-2748 (1998). [CrossRef]
  19. N. V. Voshchinnikov, V. B. Il'in, Th. Henning, B. Michel, and V. G. Farafonov, "Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results," J. Quant. Spectrosc. Radiat. Transfer 65, 877-893 (2000). [CrossRef]
  20. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm," Appl. Opt. 36, 2818-2824 (1997). [CrossRef] [PubMed]
  21. M. E. Thomas, M. B. Airola, N. T. Boggs, C. C. Carter, and J. E. Steinberg, "Complex refractive index of biological materials," in Proceedings of the 7th Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Virginia, USA (2006). [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  23. F. Barnaba and G. P. Gobbi, "Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases," J. Geophys. Res. 106, 3005-3018 (2001). [CrossRef]
  24. L. D. Harder, "Pollen-size comparisons among animal pollinated angiosperms with different pollination characteristics," Biol. J. Linn. Soc. 64, 513-525 (1998). [CrossRef]
  25. M. I. Mischenko, "Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength," Appl. Opt. 32, 4652-4666 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited