OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 25 — Sep. 1, 2007
  • pp: 6283–6290

Comparison of parallel-plate and in-plane poled polymer films for terahertz sensing

Colin V. McLaughlin, Xuemei Zheng, and L. Michael Hayden  »View Author Affiliations


Applied Optics, Vol. 46, Issue 25, pp. 6283-6290 (2007)
http://dx.doi.org/10.1364/AO.46.006283


View Full Text Article

Enhanced HTML    Acrobat PDF (1265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have performed calculations and measurements of the efficacy of two poling geometries of poled electro-optic (EO) polymer films for use in sensing terahertz (THz) radiation via EO sampling. Taking reflective and absorptive losses into consideration, we find that a parallel-plate (PP) poled film has a sensitivity maximum when oriented at 55° to the incident probe and THz beams. In addition, we show that our in-plane (IP) poled polymer films are comparable in sensitivity to PP-poled films and discuss the potential for improving IP-poled polymer devices.

© 2007 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.4890) Materials : Organic materials
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(250.2080) Optoelectronics : Polymer active devices

ToC Category:
Materials

History
Original Manuscript: May 18, 2007
Manuscript Accepted: June 29, 2007
Published: August 23, 2007

Citation
Colin V. McLaughlin, Xuemei Zheng, and L. Michael Hayden, "Comparison of parallel-plate and in-plane poled polymer films for terahertz sensing," Appl. Opt. 46, 6283-6290 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-25-6283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Zheng, A. Sinyukov, and L. M. Hayden, "Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair," Appl. Phys. Lett. 87, 081115 (2005). [CrossRef]
  2. X. C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002). [CrossRef]
  3. A. Schneider, M. Neis, M. Stillhart, B. Rutz, R. U. A. Khan, and P. Gunter, "Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment," J. Opt. Soc. Am. B 23, 1822-1835 (2006). [CrossRef]
  4. M. van Exter, C. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989). [CrossRef]
  5. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004). [CrossRef]
  6. H. Cao, T. F. Heinz, and A. Nahata, "Electro-optic detection of femtosecond electromagnetic pulses by use of poled polymers," Opt. Lett. 27, 775-777 (2002). [CrossRef]
  7. A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150-152 (1996). [CrossRef]
  8. X. Zheng, C. V. McLaughlin, M. R. Leahy-Hoppa, A. M. Sinyukov, and L. M. Hayden, "Modeling a broadband terahertz system based on an electro-optic polymer emitter sensor pair," J. Opt. Soc. Am. B 23, 1338-1347 (2006). [CrossRef]
  9. T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006). [CrossRef]
  10. N. C. J. van der Valk, T. Wenckenbach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J. Opt. Soc. Am. B 21, 622-631 (2004). [CrossRef]
  11. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).
  12. K. D. Singer, J. E. Sohn, and S. J. Lalama, "Second harmonic generation in poled polymer films," Appl. Phys. Lett. 49, 248-250 (1986). [CrossRef]
  13. A. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites," Appl. Opt. 35, 2346-2354 (1996). [CrossRef]
  14. FEMLAB 2006, COMSOL AB, Stockholm, Sweden, http://www.comsol.com.
  15. M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993). [CrossRef]
  16. L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited