OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 25 — Sep. 1, 2007
  • pp: 6314–6322

Optical axis perturbation in folded planar ring resonators

Jie Yuan, Xingwu Long, Bin Zhang, Fei Wang, and Hongchang Zhao  »View Author Affiliations


Applied Optics, Vol. 46, Issue 25, pp. 6314-6322 (2007)
http://dx.doi.org/10.1364/AO.46.006314


View Full Text Article

Enhanced HTML    Acrobat PDF (1200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mathematical model of a four-sided folded planar ring resonator is established. The model can be modified into a triangular ring resonator, a square ring resonator, and a four-sided folded ring resonator, all of which are widely used for ring laser gyroscopes by changing certain design parameters such as incident angle Ai and side ratio H. By use of the extended matrix formulation, the optical axis perturbation, including optical axis decentration and optical axis tilt, in those planar ring resonators is analyzed in detail resulting in some novel findings. It has been determined that the longer the mirror radius, the larger the mode volume, the higher the sensitivity of optical axis decentration and the lower the sensitivity of optical axis tilt. The same mirror misalignment value, mostly the misalignment induced by optical axis decentration in the x and y components, has the conventional ratio of 1: [ cos ( A i ) ] 2 for the symmetrical points of the resonator. Details of the effect of Ai and H on the optical axis tilt have also been determined. The difference in optical axis tilt between different kinds of ring resonator is disclosed. The sensitivity of optical axis tilt was found to undergo singular rapid change along with the right edge of the second stable area. This singular behavior is useful for those resonators that have a small incident angle, such as A i = 15 ° , because those resonators have a second stable region. These interesting findings are important for cavity design, cavity improvement, and alignment of planar ring resonators.

© 2007 Optical Society of America

OCIS Codes
(140.3370) Lasers and laser optics : Laser gyroscopes
(140.3410) Lasers and laser optics : Laser resonators
(140.3560) Lasers and laser optics : Lasers, ring
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 2, 2007
Revised Manuscript: June 4, 2007
Manuscript Accepted: July 13, 2007
Published: August 24, 2007

Citation
Jie Yuan, Xingwu Long, Bin Zhang, Fei Wang, and Hongchang Zhao, "Optical axis perturbation in folded planar ring resonators," Appl. Opt. 46, 6314-6322 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-25-6314

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited