OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 25 — Sep. 1, 2007
  • pp: 6344–6349

Hard target UV lidar measurements of isoprene mixing ratios and emission rates from eucalyptus trees

David Edward Roberts, Anton Du Plessis, and Saturnin Ombinda-Lemboumba  »View Author Affiliations

Applied Optics, Vol. 46, Issue 25, pp. 6344-6349 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of UV lidar to measure isoprene concentrations for environmental studies has been investigated. With a hard target lidar system at 223   nm , isoprene mixing ratios above eucalyptus trees were measured with a sensitivity of about 1 ppbv. Results over a long timescale were compared with an existing model of isoprene emission for a wide range of temperature and sunlight values. Fast time dependent results yielded a leaf emission rate of 25   μg   g 1 hour 1 , consistent with emission from other eucalyptus species. Requirements for development of the system for range resolved isoprene number density measurements using atmospheric backscatter lidar are discussed.

© 2007 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(140.3600) Lasers and laser optics : Lasers, tunable
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: April 11, 2007
Revised Manuscript: June 1, 2007
Manuscript Accepted: June 1, 2007
Published: August 27, 2007

David Edward Roberts, Anton Du Plessis, and Saturnin Ombinda-Lemboumba, "Hard target UV lidar measurements of isoprene mixing ratios and emission rates from eucalyptus trees," Appl. Opt. 46, 6344-6349 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Hester and R. M. Harrison, Volatile Organic Compounds in the Atmosphere, Issues in Environmental Science and Technology (The Royal Society of Chemistry, 1995).
  2. A. Guenther, C. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman, "A global model of natural volatile organic compound emissions," J. Geophys. Res. 100(D5), 8873-8892 (1995). [CrossRef]
  3. A. B. Guenther, R. K. Monson, and R. Fall, "Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development," J. Geophys. Res. 96, 10799-10808 (1991). [CrossRef]
  4. M. Zunckel, K. Chiloane, M. Sowden, and L. Otter, "Biogenic volatile organic compounds (BVOCs): the state of knowledge in southern Africa and the challenges for air quality management," S. Afr. J. Sci. (to be published).
  5. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984), Chap. 7.
  6. P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003). [CrossRef] [PubMed]
  7. Y. Saito, P. Weibring, H. Edner, and S. Svanberg, "Possibility of hard-target lidar detection of a biogenic volatile organic compound, a-pinene gas, over forest areas," Appl. Opt. 40, 3572-3574 (2001). [CrossRef]
  8. T. V. Nunes and C. A. Pio, "Emission of volatile organic compounds from Portuguese Eucalyptus forests," Chemosphere Global Change Sci. 3, 239-248 (2001). [CrossRef]
  9. P. Campuzano-Jost, M. B. Williams, L. D'Ottone, and A. J. Hynes, "Kinetics and mechanism of the reaction of the hydroxyl radical with h8-isoprene and d8-isoprene: isoprene absorption cross-sections, rate coefficients, and the mechanism of hydroperoxyl radical production," J. Phys. Chem. A 108, 1537-1551 (2004). [CrossRef]
  10. F. Kühnemann, M. Wolfertz, S. Arnold, M. Lagemann, A. Popp, G. Schüler, A. Jux, and W. Boland, "Simultaneous online detection of isoprene and isoprene-d2 using infrared photoacoustic spectroscopy," Appl. Phys. B 75, 397-403 (2002). [CrossRef]
  11. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry. Part 1. gas phase reactions of Ox, HOx, NOx and SOx species," Atmos. Chem. Phys. Discuss. 3, 6179-6699 (2003). [CrossRef]
  12. J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, "Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence," J. Atmos. Chem. 21, 263-273 (1995). [CrossRef]
  13. M. Zunckel, K. Venjonoka, J. J. Pienaar, E.-G. Brunke, O. Pretorius, A. Koosialee, A. Raghunandan, and A. M. van Tienhoven, "Surface ozone over southern Africa: synthesis of monitoring results during the Cross border Air Pollution Impact Assessment project," Atmos. Environ. 38, 6139-6147 (2004). [CrossRef]
  14. T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, and N. Takeuchi, "Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109," Appl. Opt. 40, 949-956 (2001). [CrossRef]
  15. A. B. Guenther, P. R. Zimmerman, and P. C. Harley, "Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses," J. Geophys. Res. 98, 12609-12617 (1993). [CrossRef]
  16. E. C. Apel, D. D. Riemer, A. Hills, W. Baugh, J. Orlando, I. Faloona, D. Tan, W. Brune, B. Lamb, H. Westberg, M. A. Carol, T. Thornberry, and C. D. Geron, "Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive," J. Geophys. Res. 107, ACH-7-1-ACH-7-15 (2002). [CrossRef]
  17. C. He, F. Murray, and T. Lyons, "Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia: the study of uncertainties in physical measurements," Atmos. Environ. 34, 645-655 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited