OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 25 — Sep. 1, 2007
  • pp: 6427–6433

No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 2. Tests

Giampiero Naletto, Fabio Frassetto, Nicola Codogno, Enrico Grisan, Stefano Bonora, Vania Da Deppo, and Alfredo Ruggeri  »View Author Affiliations


Applied Optics, Vol. 46, Issue 25, pp. 6427-6433 (2007)
http://dx.doi.org/10.1364/AO.46.006427


View Full Text Article

Enhanced HTML    Acrobat PDF (490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The description of an adaptive optics (AO) system with no wavefront sensor to correct primary aberrations is presented. This system is based on closed loop software that iteratively analyzes a point source target image on the instrument focal plane and suitably modifies the AO device. The performed tests with a pull-only deformable mirror (DM) have shown that the system works very well, reaching an optimal focusing condition in a few seconds using standard components. Such a system can be conveniently applied in all the fields in which a not very fast optical adaptation is acceptable.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(220.1000) Optical design and fabrication : Aberration compensation
(230.4040) Optical devices : Mirrors

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: March 28, 2007
Revised Manuscript: June 19, 2007
Manuscript Accepted: June 28, 2007
Published: August 30, 2007

Citation
Giampiero Naletto, Fabio Frassetto, Nicola Codogno, Enrico Grisan, Stefano Bonora, Vania Da Deppo, and Alfredo Ruggeri, "No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 2. Tests," Appl. Opt. 46, 6427-6433 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-25-6427


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998).
  2. R. Irwan and R. Lane, "Analysis of optimal centroid estimation applied to Shack-Hartmann sensing," Appl. Opt. 38, 6737-6743 (1999). [CrossRef]
  3. R. K. Tyson, D. E. Canning, and J. S. Tharp, "Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results," Opt. Eng. 44, 096002 (2005). [CrossRef]
  4. R. K. Tyson, J. S. Tharp, and D. E. Canning, "Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closed-loop results," Opt. Eng. 44, 096003 (2005). [CrossRef]
  5. O. Albert, L. Sherman, G. Mourou, and T. Norris, "Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy," Opt. Lett. 25, 52-54 (2000). [CrossRef]
  6. B. Potsaid, Y. Bellouard, and J. Wen, "Adaptive scanning optical microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging," Opt. Express 13, 6504-6518 (2005). [CrossRef] [PubMed]
  7. J. Liang and D. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  8. J. Liang, D. Williams, and D. Miller, "Supernormal vision and high resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  9. L. Zhu, P. Sun, D. Bartsch, W. Freeman, and Y. Fainman, "Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation," Appl. Opt. 38, 168-176 (1999). [CrossRef]
  10. J.-F. Le Gargasson, M. Glanc, and P. Léna, "Retinal imaging with adaptive optics," C. R. Acad. Sci. Ser. IV Phys. Astrophys. 2, 1131-1138 (2001).
  11. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). [PubMed]
  12. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005). [CrossRef] [PubMed]
  13. D. Gray, W. Merigan, J. Wolfing, B. Gee, J. Porter, A. Dubra, T. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. Williams, "In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Express 14, 7144-7158 (2006). [CrossRef] [PubMed]
  14. S. Zommer, E. Ribak, S. Lipson, and J. Adler, "Simulated annealing in ocular adaptive optics," Opt. Lett. 31, 1-3 (2006). [CrossRef]
  15. E. Fernández and L. Vabre, "Adaptive optics with a magnetic deformable mirror: application in the human eye," Opt. Express 14, 8900-8917 (2006). [CrossRef] [PubMed]
  16. D. Iskander, M. Collins, M. Morelande, and M. Zhu, "Analyzing the dynamic wavefront aberrations in the human eye," IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004). [CrossRef] [PubMed]
  17. L. Zhu, M. Collins, and D. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-671 (2004). [CrossRef] [PubMed]
  18. T. Okada, K. Ebata, M. Shiozaki, T. Kyotani, A. Tsuboi, M. Sawada, and H. Fukushima, "Development of adaptive mirror for CO2 laser," in High-Power Lasers in Manufacturing, X. Chen, T. Fujioka, and A. Matsunawa, eds., Proc. SPIE 3888, 509-520 (2000). [CrossRef]
  19. S. Jackel and I. Moshe, "Adaptive compensation of lower order thermal aberrations in concave-convex power oscillators under variable pump conditions," Opt. Eng. 39, 2330-2337 (2000). [CrossRef]
  20. P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. D. Silvestri, "Optimization of high-order harmonic generation by adaptive control of a sub-10-fs pulse wave front," Opt. Lett. 29, 207-209 (2004). [CrossRef] [PubMed]
  21. R. Zacharias, N. Beer, E. Bliss, S. Burkhart, S. Cohen, S. Sutton, R. V. Atta, S. Winters, J. T. Salmon, M. L. C. Stolz, D. Pigg, and T. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004). [CrossRef]
  22. W. Shakespeare, R. Pearson, J. Grenestedt, P. Hutapea, and V. Gupta, "MEMS integrated submount alignment for optoelectronics," J. Lightwave Technol. 23, 504 (2005). [CrossRef]
  23. F. Gonté, A. Courteville, and R. Dändliker, "Optimization of single-mode fiber coupling efficiency with an adaptive membrane mirror," Opt. Eng. 41, 10731076 (2002). [CrossRef]
  24. E. Grisan, F. Frassetto, V. D. Deppo, G. Naletto, and A. Ruggeri, "Aberration estimation from single point image in a simulated adaptive optics system," in Proceedings of the Engineering in Medicine and Biology Society IEEE-EMBS, 27th Annual International Conference, pp. 3173-3176 (2005).
  25. E. Grisan, F. Frassetto, V. D. Deppo, G. Naletto, and A. Ruggeri, "No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods," Appl. Opt. 46, 0000-0000 (2007). [same issue (81592)] [CrossRef]
  26. S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, "Fast wavefront active control by a DSP-driven deformable membrane mirror," Rev. Sci. Instrum. 77, 093,102 (2006). [CrossRef]
  27. S. Bonora and L. Poletto, "Push-pull membrane mirrors for adaptive optics," Opt. Express 14, 11,935-11,944 (2006). [CrossRef]
  28. R. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  29. J. Wang and D. Silva, "Wave-front interpretation with Zernike polynomials," Appl. Opt. 19, 1510-1518 (1980). [CrossRef] [PubMed]
  30. E. Clafin and N. Bareket, "Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions," J. Opt. Soc. Am. 3, 1833-1839 (1986). [CrossRef]
  31. G. Vdovin, "Spatial light modulator based on the control of the wavefront curvature," Opt. Commun. 115, 170-178 (1995). [CrossRef]
  32. L. Zhu, P. Sun, D. Bartsch, W. Freeman, and Y. Fainman, "Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror," Appl. Opt. 38, 6019-6026 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited