OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 25 — Sep. 1, 2007
  • pp: 6449–6453

Experimental investigation of the performance of an annular aperture and a circular aperture on the same very-small-aperture laser facet

Hongfeng Gai, Jia Wang, Qian Tian, Wei Xia, and Xiangang Xu  »View Author Affiliations

Applied Optics, Vol. 46, Issue 25, pp. 6449-6453 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A very-small-aperture laser (VSAL) with a circular aperture has a trade-off between the spot size and the output power. A nanometric annular aperture is fabricated to overcome this difficulty. The advantages of the annular aperture are demonstrated by measuring and comparing its near-field intensity distribution with that of a circular aperture. These apertures are fabricated on the same VSAL to ensure that they are under the same illumination conditions. The experimental results indicate that an annular aperture produces a smaller spot size and a higher peak intensity than a circular aperture. The confinement effect and the enhancement effect are attributed to the convergence of the power flow that passes through the annular aperture. The observed enhancement effect decreases when the distance from the VSAL facet is increased, but it does not vanish even when the distance is as large as 3.5   μm .

© 2007 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(140.2020) Lasers and laser optics : Diode lasers
(180.5810) Microscopy : Scanning microscopy
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 11, 2007
Revised Manuscript: July 23, 2007
Manuscript Accepted: July 25, 2007
Published: August 30, 2007

Hongfeng Gai, Jia Wang, Qian Tian, Wei Xia, and Xiangang Xu, "Experimental investigation of the performance of an annular aperture and a circular aperture on the same very-small-aperture laser facet," Appl. Opt. 46, 6449-6453 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H.-J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999). [CrossRef]
  2. W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recording," Jpn. J. Appl. Phys. Part 1 42, 981-988 (2003). [CrossRef]
  3. Q. Gan, G. Song, G. Yang, Y. Xu, J. Gao, Y. Li, Q. Cao, L. Chen, H. Lu, Z. Chen, W. Zeng, and R. Yan, "Near-field scanning optical microscopy with an active probe," Appl. Phys. Lett. 88, 121111 (2006).
  4. T. Ohno, A. V. Itagi, F. Chen, J. A. Bain, and T. E. Schlesinger, "Characterization of very small aperture GaN lasers," Proc. SPIE 5380, 393-402 (2004). [CrossRef]
  5. H. Gai, J. Wang, Q. Tian, W. Xia, X. Xu, S. Han, and Z. Hao, "Experimental research on the performance of a very-small-aperture laser," J. Microsc. to be published.
  6. Q. Gan, G. Song, Y. Xu, J. Gao, Q. Cao, X. Pan, Y. Zhong, G. Yang, X. Zhu, and L. Chen, "Performance analysis of very-small-aperture lasers," Opt. Lett. 30, 1470-1472 (2005). [CrossRef]
  7. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  8. C. J. Bouwkamp, "On Bethe's theory of diffraction by small holes," Philips Res. Rep. 5, 321-332 (1950).
  9. X. Shi, R. L. Thornton, and L. Hesselink, "Nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE 4342, 320-327 (2002). [CrossRef]
  10. A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83, 4474-4476 (2003). [CrossRef]
  11. Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "A C-shaped nanoaperture vertical-cavity surface-emitting laser for high-density near-field optical data storage," Proc. SPIE 6132, 61320 (2006).
  12. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003). [CrossRef]
  13. L. Stebounova, F. Chen, J. Bain, T. E. Schlesinger, S. Ip, and G. C. Walker, "Field localization in very small aperture lasers studied by apertureless near-field microscopy," Appl. Opt. 45, 6192-6197 (2006).
  14. J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007). [CrossRef]
  15. S. Shinada, J. Hashizume, and F. Koyama, "Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating," Appl. Phys. Lett. 83, 836-838 (2003). [CrossRef]
  16. L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405 (2005).
  17. K. Tanaka, T. Ohkubo, M. Oumi, Y. Mitsuoka, K. Nakajima, H. Hosaka, and K. Itao, "Numerical simulation on read-out characteristics of the planar aperture-mounted head with a minute scatterer," Jpn. J. Appl. Phys. Part 1 40, 1542-1547 (2001). [CrossRef]
  18. K. Tanaka, H. Hosaka, K. Itao, M. Oumi, T. Niwa, T. Miyatani, Y. Mitsuoka, K. Nakajima, and T. Ohkubo, "Improvements in near-field optical performance using localized surface plasmon excitation by a scatterer-formed aperture," Appl. Phys. Lett. 83, 1083-1085 (2003). [CrossRef]
  19. J. Hashizume and F. Koyama, "Plasmon enhanced optical near-field probing of metal nanoaperture surface emitting laser," Opt. Express 12, 6391-6396 (2004). [CrossRef]
  20. H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005). [CrossRef]
  21. F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002). [CrossRef]
  22. F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays," Phys. Rev. B 67, 155314 (2003). [CrossRef]
  23. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004). [CrossRef]
  24. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Microwave transmission through a single subwavelength annular aperture in a metal plate," Phys. Rev. Lett. 94, 193902 (2005). [CrossRef]
  25. F. Chen, J. Zhai, D. D. Stancil, and T. E. Schlesinger, "Fabrication of very small aperture laser (VSAL) from a commercial edge emitting laser," Jpn. J. Appl. Phys. Part 1 40, 1794-1795 (2001). [CrossRef]
  26. E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
  27. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).
  28. H. Gai, J. Wang, and Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations," Appl. Opt. 46, 2229-2233 (2007). [CrossRef]
  29. Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. 28, 1063-1076 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited