OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 26 — Sep. 10, 2007
  • pp: 6606–6622

Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations

Albert Ansmann, Ulla Wandinger, Olivier Le Rille, Dulce Lajas, and Anne Grete Straume  »View Author Affiliations


Applied Optics, Vol. 46, Issue 26, pp. 6606-6622 (2007)
http://dx.doi.org/10.1364/AO.46.006606


View Full Text Article

Enhanced HTML    Acrobat PDF (1785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The European Space Agency will launch the Atmospheric Laser Doppler Instrument (ALADIN) for global wind profile observations in the near future. The potential of ALADIN to measure the optical properties of aerosol and cirrus, as well, is investigated based on simulations. A comprehensive data analysis scheme is developed that includes (a) the correction of Doppler-shifted particle backscatter interference in the molecular backscatter channels (cross-talk effect), (b) a procedure that allows us to check the quality of the cross-talk correction, and (c) the procedures for the independent retrieval of profiles of the volume extinction and backscatter coefficients of particles considering the height-dependent ALADIN signal resolution. The error analysis shows that the particle backscatter and extinction coefficients, and the corresponding extinction-to-backscatter ratio (lidar ratio), can be obtained with an overall (systematic + statistical) error of 10%–15%, 15%–30%, and 20%–35%, respectively, in tropospheric aerosol and dust layers with extinction values from 50   to   2 0 0 Mm 1 ; 700-shot averaging ( 50   km horizontal resolution) is required. Vertical signal resolution is 500   m in the lower troposphere and 1000   m in the free troposphere. In cirrus characterized by extinction coefficients of 200 Mm 1 and an optical depth of > 0.2 , backscatter coefficients, optical depth, and column lidar ratios can be obtained with 25%–35% relative uncertainty and a horizontal resolution of 10   km (140 shots). In the stratosphere, only the backscatter coefficient of aerosol layers and polar stratospheric clouds can be retrieved with an acceptable uncertainty of 15%–30%. Vertical resolution is 2000 m.

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 8, 2007
Revised Manuscript: May 30, 2007
Manuscript Accepted: June 1, 2007
Published: September 7, 2007

Citation
Albert Ansmann, Ulla Wandinger, Olivier Le Rille, Dulce Lajas, and Anne Grete Straume, "Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations," Appl. Opt. 46, 6606-6622 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-26-6606


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. European Space Agency, Atmospheric Dynamics Mission, Report for Mission Selection, ESA-SP 1233(4), ESTEC, Noordwijk, The Netherlands (1999).
  2. A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005). [CrossRef]
  3. M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).
  4. M.-L. Chanin, A. Hauchecorne, A. Garnier, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989). [CrossRef]
  5. A. Garnier and M.-L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992). [CrossRef]
  6. C. L. Korb, B. M. Gentry, and C. Y. Weng, "Edge technique: theory and application to the lidar measurement of atmospheric wind," Appl. Opt. 31, 4202-4212 (1992). [CrossRef] [PubMed]
  7. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999). [CrossRef]
  8. C. Souprayen, A. Garnier, and A. Hertzog, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration," Appl. Opt. 38, 2422-2431 (1999). [CrossRef]
  9. B. M. Gentry, H. Chen, and S. X. Li, "Wind measurements with 355 nm molecular Doppler lidar," Opt. Lett. 25, 1231-1233 (2000). [CrossRef]
  10. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983). [CrossRef]
  11. H. Shimizu, S. A. Lee, and C. Y. She, "High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters," Appl. Opt. 22, 1373-1381 (1983). [CrossRef] [PubMed]
  12. C. J. Grund and E. W. Eloranta, "Fiber-optic scrambler reduces the bandpass range dependence of Fabry-Perot etalons used for spectral analysis of lidar backscatter," Appl. Opt. 30, 2668-2670 (1991). [CrossRef] [PubMed]
  13. C. Y. She, R. J. Alvarez, II, M. Caldwell, and D. A. Krueger, "High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles," Opt. Lett. 17, 541-543 (1992). [CrossRef] [PubMed]
  14. P. Piironen and E. W. Eloranta, "Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter," Opt. Lett. 19, 234-236 (1994). [CrossRef] [PubMed]
  15. Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999). [CrossRef]
  16. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001). [CrossRef]
  17. E. W. Eloranta, "High spectral resolution lidar," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 143-163.
  18. A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-141.
  19. European Space Agency, "Earth Clouds, Aerosols, and Radiation Explorer," Rep. ESA SP-1279(1), ESTEC, Noordwijk, The Netherlands (2004).
  20. M. P. McCormick, "Airborne and spaceborne lidars," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 355-397.
  21. J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005). [CrossRef]
  22. D. M. Winker, J. R. Pelon, and M. P. McCormick, "The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds," in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, eds., Proc. SPIE 4893, 1-11 (2003).
  23. A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001). [CrossRef]
  24. K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001). [CrossRef]
  25. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002). [CrossRef]
  26. A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).
  27. D. Bruneau and J. Pelon, "Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment," Appl. Opt. 42, 1101-1114 (2003). [CrossRef] [PubMed]
  28. M. Imaki and T. Kobayashi, "Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties," Appl. Opt. 44, 6023-6030 (2005). [CrossRef] [PubMed]
  29. P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).
  30. R. P. Sandoval and R. L. Armstrong, "Rayleigh-Brillouin spectra in molecular nitrogen," Phys. Rev. A 13, 752-757 (1976). [CrossRef]
  31. G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).
  32. A. Ansmann and U. Wandinger, ADM-Aeolus: Consolidation of Algorithms for Supplementary Geophysical Products--Cloud and Aerosol Backscatter and Extinction Profiling with the Spaceborne High-Spectral-Resolution Doppler Lidar ALADIN, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2007). [PubMed]
  33. C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).
  34. M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).
  35. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, and E. M. Patterson, "Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique," Appl. Opt. 21, 1541-1553 (1982). [CrossRef] [PubMed]
  36. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratios," Appl. Opt. 43, 5370-5385 (2004). [CrossRef] [PubMed]
  37. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, "Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113-7131 (1992). [CrossRef] [PubMed]
  38. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998). [CrossRef]
  39. J. D. Klett, "Stable analytical solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  40. F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  41. Y. Sasano, E. V. Browell, and S. Ismail, "Error caused by using a constant extinction/backscattering ratio in the lidar solution," Appl. Opt. 24, 3929-3932 (1985). [CrossRef] [PubMed]
  42. L. R. Bissonnette, "Lidar and multiple scattering," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 43-103.
  43. R. J. Hogan, "Fast approximate calculation of multiply scattered lidar returns," Appl. Opt. 45, 5984-5992 (2006). [CrossRef] [PubMed]
  44. A. Bucholtz, "Rayleigh-scattering calculations for the terrestrial atmosphere," Appl. Opt. 34, 2765-2773 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited