OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 26 — Sep. 10, 2007
  • pp: 6641–6647

Key-space analysis of double random phase encryption technique

David S. Monaghan, Unnikrishnan Gopinathan, Thomas J. Naughton, and John T. Sheridan  »View Author Affiliations


Applied Optics, Vol. 46, Issue 26, pp. 6641-6647 (2007)
http://dx.doi.org/10.1364/AO.46.006641


View Full Text Article

Enhanced HTML    Acrobat PDF (1367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform a numerical analysis on the double random phase encryption∕decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(100.2000) Image processing : Digital image processing
(200.4740) Optics in computing : Optical processing

ToC Category:
Optics in Computing

History
Original Manuscript: November 20, 2006
Revised Manuscript: May 2, 2007
Manuscript Accepted: May 22, 2007
Published: September 7, 2007

Citation
David S. Monaghan, Unnikrishnan Gopinathan, Thomas J. Naughton, and John T. Sheridan, "Key-space analysis of double random phase encryption technique," Appl. Opt. 46, 6641-6647 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-26-6641


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. F. Gaines, Cryptanalysis: a Study of Ciphers and Their Solution (Dover, 1939).
  2. H. O. Yardley, The American Black Chamber (U.S. Naval Institute Press, 1931).
  3. W. Diffie and M. E. Hellman, "New directions in cryptography," IEEE Trans. Inf. Theory 22, 644-654 (1976). [CrossRef]
  4. C. A. Deavours, Cryptology Yesterday, Today and Tomorrow (Artech House, 1987).
  5. P. Refregier and B. Javidi, "Optical-image encryption based on input plane and Fourier plane random encoding," Opt. Lett. 20, 767-769 (1995). [CrossRef] [PubMed]
  6. E. Tajahuerce and B. Javidi, "Encrypting three-dimensional information with digital holography," Appl. Opt. 39, 6595-6601 (2000). [CrossRef]
  7. B. Hennelly and J. T. Sheridan, "Optical image encryption by random shifting in fractional Fourier domains," Opt. Lett. 28, 269-271 (2003). [CrossRef] [PubMed]
  8. B. M. Hennelly and J. T. Sheridan, "Optical encryption and the space bandwidth product," Opt. Commun. 247, 291-305 (2005). [CrossRef]
  9. L. E. M. Brackenbury and K. M. Bell, "Optical encryption of digital data," Appl. Opt. 39, 5374-5379 (2000). [CrossRef]
  10. G. Unnikrishnan, J. Joseph, and K. Singh, "Optical encryption by double-random phase encoding in the fractional Fourier domain," Opt. Lett. 25, 887-889 (2000). [CrossRef]
  11. T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng. 43, 2233-2238 (2004). [CrossRef]
  12. B. M. Hennelly and J. T. Sheridan, "Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms," J. Opt. Soc. Am. A 22, 917-927 (2005). [CrossRef]
  13. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  14. U. Schnars and W. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  15. B. H. Zhu, H. F. Zhao, and S. T. Liu, "Image encryption based on pure intensity random coding and digital holography technique," Optik 114, 95-99 (2003). [CrossRef]
  16. M. Liebling, T. Blu, and M. Unser, "Complex-wave retrieval from a single off-axis hologram," J. Opt. Soc. Am. A 21, 367-377 (2004). [CrossRef]
  17. J. R. Fienup, "Phase retrieval algorithms--a comparison," Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  18. B. M. Hennelly and J. T. Sheridan, "Image encryption and the fractional Fourier transform," Optik 114, 251-265 (2003). [CrossRef]
  19. U. Gopinathan, T. J. Naughton, and J. T. Sheridan, "Polarization encoding and multiplexing of two-dimensional signals: application to image encryption," Appl. Opt. 45, 5693-5700 (2006). [CrossRef] [PubMed]
  20. F. Goudail, F. Bollaro, B. Javidi, and P. Refregier, "Influence of a perturbation in a double phase-encoding system," J. Opt. Soc. Am. A 15, 2629-2638 (1998). [CrossRef]
  21. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, "Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys," Opt. Lett. 30, 1644-1646 (2005). [CrossRef] [PubMed]
  22. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, "Resistance of the double random phase encryption against various attacks," Opt. Express 15, 10253-10265 (2007). [CrossRef] [PubMed]
  23. X. Peng, P. Zhang, H. Z. Wei, and B. Yu, "Known-plaintext attack on optical encryption based on double random phase keys," Opt. Lett. 31, 1044-1046 (2006). [CrossRef] [PubMed]
  24. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, "A known-plaintext heuristic attack on the Fourier plane encryption algorithm," Opt. Express 14, 3181-3186 (2006). [CrossRef] [PubMed]
  25. http://sipi.usc.edu.database/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited