OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 27 — Sep. 20, 2007
  • pp: 6809–6814

Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films

Naoaki Suzuki and Yasuo Tomita  »View Author Affiliations


Applied Optics, Vol. 46, Issue 27, pp. 6809-6814 (2007)
http://dx.doi.org/10.1364/AO.46.006809


View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an experimental study of holographic (coherent) scattering due to parasitic noise gratings recorded in SiO 2 nanoparticle-dispersed photopolymer films. Dependences of film thickness and nanoparticle concentration on holographic scattering losses are evaluated. It is shown that the geometric feature of the holographic scattering pattern in the two-beam recording setup can be explained by the Ewald sphere construction. It is found that holographic scattering becomes noticeable when a film with nanoparticle concentrations higher than 10 vol.% is thicker than 100 μm . The significance of holographic scattering in the characterization of a volume grating recorded in a thick ( > 100 μm ) nanoparticle-dispersed photopolymer film is also discussed.

© 2007 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.4890) Materials : Organic materials
(160.5470) Materials : Polymers
(290.5820) Scattering : Scattering measurements

ToC Category:
Holography

History
Original Manuscript: June 1, 2007
Manuscript Accepted: July 20, 2007
Published: September 19, 2007

Citation
Naoaki Suzuki and Yasuo Tomita, "Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films," Appl. Opt. 46, 6809-6814 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-27-6809


Sort:  Year  |  Journal  |  Reset  

References

  1. K. Biedermann, "The scattered flux spectrum of photographic materials for holography," Optik 31, 367-389 (1970).
  2. R. R. A. Syms and L. Solymar, "Noise gratings in photographic emulsions," Opt. Commun. 43, 107-110 (1982). [CrossRef]
  3. L. Solymar and G. D. G. Riddy, "Noise gratings for single- and double-beam exposures in silver halide emulsions," J. Opt. Soc. Am. A 7, 2107-2108 (1990). [CrossRef]
  4. A. Fimia, R. Fuentes, and A. Beléndez, "Noise gratings in bleached silver halide diffuse-object holograms," Opt. Lett. 19, 1243-1245 (1994). [CrossRef] [PubMed]
  5. J. M. Moran and I. P. Kaminow, "Properties of holographic gratings photoinduced in polymethyl methacrylate," Appl. Opt. 12, 1964-1970 (1973). [CrossRef] [PubMed]
  6. E. S. Gyul'nazarov, T. N. Smirnova, D. V. Surovtsev, and E. A. Tkhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectrosc. 51, 728-733 (1989). [CrossRef]
  7. A. Beléndez, A. Fimia, L. Caretero, and F. Mateos, "Self-induced phase gratings due to the inhomogeneous structure of acrylamide photopolymer systems used as holographic recording materials," Appl. Phys. Lett. 67, 3856-3858 (1995). [CrossRef]
  8. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, "A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography," J. Mod. Opt. 45, 2345-2354 (1998). [CrossRef]
  9. J. A. Frantz, R. K. Kostuk, and D. A. Waldman, "Coherent scattering properties of a cationic ring-opening volume holographic recording material," Proc. SPIE 4296, 267-273 (2001). [CrossRef]
  10. J. A. Frantz, R. K. Kostuk, and D. A. Waldman, "Model of noise-grating selectivity in volume holographic recording materials by use of Monte Carlo simulations," J. Opt. Soc. Am. A 21, 378-387 (2004). [CrossRef]
  11. M. A. Ellabban, M. Fally, H. Uršic, and I. Drevenšec-Olenik, "Holographic scattering in photopolymer-dispersed liquid crystals," Appl. Phys. Lett. 87, 151101 (2005). [CrossRef]
  12. W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).
  13. R. Magnusson and T. K. Gaylord, "Laser scattering induced holograms in lithium niobate," Appl. Opt. 13, 1545-1548 (1974). [CrossRef]
  14. V. Voronov, I. Dorosh, Yu. Kuz'minov, and N. Tkachenko, "Photoinduced light scattering in cerium-doped barium strontium niobate crystals," Sov. J. Quantum Electron. 10, 1346-1349 (1980). [CrossRef]
  15. R. A. Rupp and F. W. Dress, "Light-induced scattering in photorefractive crystals," Appl. Phys. B 39, 223-229 (1986). [CrossRef]
  16. M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, "Holographic scattering in centrosymmetric Na2[Fe(CN)5NO] · 2H2O," Phys. Rev. Lett. 82, 2860-2863 (1999). [CrossRef]
  17. M. Fally, M. A. Ellaban, R. A. Rupp, M. Fink, and J. Wolfberger, "Characterization of parasitic grating in LiNbO3," Phys. Rev. B 61, 15778-15784 (2000). [CrossRef]
  18. T. N. Smirnova and E. A. Tikhonov, "Conical scattering of laser beams in active solutions," Sov. J. Quantum Electron. 9, 93-97 (1979). [CrossRef]
  19. M. R. B. Forshaw, "Explanation of the "Venetial blind" effect in holography using the Ewald sphere concept," Opt. Commun. 8, 201-206 (1973). [CrossRef]
  20. M. R. B. Forshaw, "Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow," Appl. Opt. 13, 2 (1974). [CrossRef] [PubMed]
  21. S. I. Ragnarsson, "Scattering phenomena in volume holograms with strong coupling," Appl. Opt. 17, 116-127 (1978). [CrossRef] [PubMed]
  22. G. D. G. Riddy and L. Solymar, "Theoretical model of reconstructured scatter in volume holograms," Electron. Lett. 22, 872-873 (1986). [CrossRef]
  23. L. Solymar and J. C. W. Newell, "Silver halide noise gratings recorded in dichromated gelatin," Opt. Commun. 73, 273-276 (1989). [CrossRef]
  24. R. K. Kostuk and G. T. Sincerbox, "Polarization sensitivity of noise gratings recorded in silver halide volume holograms," Appl. Opt. 27, 2993-2998 (1988). [CrossRef] [PubMed]
  25. A. Beléndez, L. Carretero, and I. Pascual, "Polarization influences on the efficiency of noise gratings recorded in silver halide holograms," Appl. Opt. 32, 7155-7163 (1993). [CrossRef] [PubMed]
  26. N. Suzuki and Y. Tomita, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002). [CrossRef]
  27. Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003). [CrossRef]
  28. N. Suzuki and Y. Tomita, "Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%," Appl. Opt. 43, 2125-2129 (2004). [CrossRef] [PubMed]
  29. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, "Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage," Appl. Phys. Lett. 88, 071103 (2006). [CrossRef]
  30. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, "Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording," Opt. Express 14, 12712-12719 (2006). [CrossRef] [PubMed]
  31. Y. Tomita, N. Suzuki, and K. Chikama, "Holographic manipulation of nanoparticle-distribution morphology in nanoparticle-dispersed photopolymers," Opt. Lett. 30, 839-841 (2005). [CrossRef] [PubMed]
  32. Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, "Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film," Opt. Lett. 31, 1402-1404 (2006). [CrossRef] [PubMed]
  33. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  34. N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, and V. Vinetskii, "Holographic storage in electrooptic crystals. II. Beam coupling-light amplification," Ferroelectrics 22, 961-964 (1979). [CrossRef]
  35. A. P. Yakimovich, "Dynamic self-amplification of scattering noise in voume-hologram recording," Opt. Spectrosc. 49, 191-193 (1980).
  36. V. A. Barachevskii, "Photopolymerizable recording media for three-dimensional holographic optical memory," High. Energy Chem. 40, 131-141 (2006). [CrossRef]
  37. W. Heller, "Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions, and dispersions of small particles," Rec. Chem. Prog. 20, 209-233 (1959).
  38. T. Kyprianidou-Leodidou, W. Caseri, and U. W. Suter, "Size variations of PbS particles in high-refractive-index nanocomposites," J. Phys. Chem. 98, 8992-8997 (1994). [CrossRef]
  39. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  40. L. B. Au, J. C. W. Newell, and L. Solymar, "Non-uniformities in thick dichromated gelatin transmission gratings," J. Mod. Opt. 34, 1211-1225 (1987). [CrossRef]
  41. D. Kermisch, "Nonuniform sinusoidally modulated dielectric gratings," J. Opt. Soc. Am. 59, 1409-1414 (1969). [CrossRef]
  42. N. Uchida, "Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector," J. Opt. Soc. Am. 63, 280-287 (1973). [CrossRef]
  43. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, "Effect of film thickness on the performance of photopolymers as holographic recording materials," Appl. Opt. 39, 2353-2358 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited