OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 28 — Oct. 1, 2007
  • pp: 6859–6866

On the nonparaxial modes of two-dimensional nearly concentric resonators

Fabian Zomer, Viktor Soskov, and Alessandro Variola  »View Author Affiliations

Applied Optics, Vol. 46, Issue 28, pp. 6859-6866 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1007 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nonparaxial scalar diffraction integral is used to determine numerically the resonance modes of a two-dimensional nearly concentric Fabry–Perot resonator. Numerical examples are provided, and results are compared to those published by Laabs and Friberg [IEEE J. Quantum Electron. 35, 198 (1999)]. Discrepancies are reported and further discussed on the basis of the difference between the solution space supported by the numerical method used here and the one used by Laabs and Friberg.

© 2007 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(350.5500) Other areas of optics : Propagation

ToC Category:
Diffraction and Gratings

Original Manuscript: December 21, 2006
Revised Manuscript: April 5, 2007
Manuscript Accepted: May 28, 2007
Published: September 21, 2007

Fabian Zomer, Viktor Soskov, and Alessandro Variola, "On the nonparaxial modes of two-dimensional nearly concentric resonators," Appl. Opt. 46, 6859-6866 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  2. R. J. Loewen, "A compact light source: design and technical feasibility study of a laser-electron storage ring x ray source," Ph.D. dissertation (Department of Physics, Stanford U., 2003).
  3. G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A. A. Babich, V. Bharadwaj, D. Barber, A. Bartl, A. Brachmann, S. Chen, J. Clarke, J. E. Clendenin, J. Dainton, K. Desch, M. Diehl, B. Dobos, T. Dorland, H. Eberl, J. Ellis, K. Flöttmann, H. Fraas, F. Franco-Sollova, F. Franke, A. Freitas, J. Goodson, J. Gray, A. Han, S. Heinemeyer, S. Hesselbach, T. Hirose, K. Hohenwarter-Sodek, J. Kalinowski, T. Kernreiter, O. Kittel, S. Kraml, W. Majerotto, A. Martinez, H.-U. Martyn, A. Mikhailichenko, W. Menges, K. Mönig, K. Moffeit, S. Moretti, O. Nachtmann, F. Nagel, T. Nakanishi, U. Nauenberg, T. Omori, P. Osland, A. A. Pankov, N. Paver, R. Pitthan, R. Pöschl, W. Porod, J. Proulx, P. Richardson, S. Riemann, S. D. Rindani, T. G. Rizzo, P. Schüler, C. Schwanenberger, D. Scott, J. Sheppard, R. K. Singh, H. Spiesberger, A. Stahl, H. Steiner, A. Wagner, G. Weiglein, G. W. Wilson, M. Woods, P. Zerwas, J. Zhang, and F. Zomer, "The role of polarized positrons and electrons in revealing fundamental interactions at the Linear Collider," arXiv e-Print archive hep-ph/0507011, submitted on July 2005, http://arxiv.org/abs/hep-ph/0507011.
  4. S. Araki, Y. Higashi, Y. Honda, Y. Kurihara, M. Kuriki, T. Okugi, T. Omori, T. Taniguchi, N. Terunuma, J. Urakawa, X. Artru, M. Chevallier, V. Strakhovenko, E. Bulyak, P. Gladkikh, K. Mönig, R. Chehab, A. Variola, F. Zomer, S. Guiducci, P. Raimondi, F. Zimmermann, K. Sakaue, T. Hirose, M. Washio, N. Sasao, H. Yokoyama, M. Fukuda, K. Hirano, M. Takano, T. Takahashi, H. Sato, A. Tsunemi, J. Gao, and V. Soskov, "Conceptual design of a polarized positron source based on laser Compton scattering," arXiv.org e-Print archive physics/0509016, revised 15 September 2005, http://arxiv.org/abs/physics/0509016.
  5. A. N. Luiten and J. C. Petersen, "Ultrafast resonant polarization interferometry: towards the first direct detection of vacuum polarization," Phys. Rev. A 70, 033801 (2004). [CrossRef]
  6. A. L. Cullen and P. K. Yu, "Complex source-point theory of the electromagnetic open resonator," Proc. R. Soc. London Ser. A 366, 155-171 (1979). [CrossRef]
  7. L. W. Davis, "Vector electromagnetic modes of an optical resonator," Phys. Rev. A 30, 3092-3096 (1984). [CrossRef]
  8. P. Varga and P. Török, "Exact and approximate solutions of Maxwell's equations for a confocal cavity," Opt. Lett. 21, 1523-1525 (1996). [CrossRef] [PubMed]
  9. S. R. Seshadri, "Electromagnetic theory of an open resonator," J. Opt. Soc. Am. A 18, 1748-1757 (2001). [CrossRef]
  10. C. J. R. Sheppard, A. Choudhury, and J. Gannaway, "Electromagnetic field near the focus of wide-angular lens and mirror systems," IEE J. Microwaves , Opt. Acoust. 1, 129-132 (1977). [CrossRef]
  11. R. Barakat, "Diffracted electromagnetic fields in the neighborhood of the focus of a paraboloidal mirror having a central opturation," Appl. Opt. 26, 3790-3795 (1987). [CrossRef] [PubMed]
  12. P. Varga and P. Török, "Focusing of electromagnetic waves by paraboloid mirrors. I. Theory," J. Opt. Soc. Am. A 17, 2081-2089 (2000). [CrossRef]
  13. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction, and Focusing of Light, Sound, and Water Waves (Hilger, 1986), p. 455.
  14. M. Kline and I. W. Kay, Electromagnetic Theory and Geometrical Optics (Wiley, 1965), p. 350.
  15. H. Laabs and A. T. Friberg, "Nonparaxial eigenmodes of stable resonators," IEEE J. Quantum Electron. 35, 198-207 (1999). [CrossRef]
  16. J. M. Bendickson, E. N. Glytsis, and T. K. Gaylord, "Scalar integral diffraction methods: unification, accuracy, and comparison with rigorous boundary element method with application to diffractive cylindrical lenses," J. Opt. Soc. Am. A 15, 1822-1837 (1998). [CrossRef]
  17. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), Chap. 5.
  18. H. Laabs, "Propagation of Hermite-Gaussian beams beyond the paraxial approximation," Opt. Commun. 147, 1-4 (1998). [CrossRef]
  19. M. Lax, W. H. Louisell, and W. B. McKnight, "From Maxwell to paraxial wave optics," Phys. Rev. A 11, 1365-1370 (1975). [CrossRef]
  20. P. Varga and P. Török, "The Gaussian wave solution of Maxwell's equations and the validity of scalar wave approximation," Opt. Commun. 152, 108-118 (1998). [CrossRef]
  21. Y. Li and E. Wolf, "Focal shifts in diffracted converging spherical waves," Opt. Commun. 39, 211-215 (1981). [CrossRef]
  22. J. A. Stamnes, Waves in Focal Regions: Propagation, Diffraction, and Focusing of Light, Sound, and Water Waves (Hilger, 1986), Chaps. 12 and 13.
  23. P. Hello, "Optical aspects of interferometric gravitational-wave detectors," Prog. Opt. 38, 85-164 (1998). [CrossRef]
  24. J. A. Arnaud, "Nonorthogonal optical waveguides and resonators," Bell Syst. Tech. J. 49, 2311-2348 (1970).
  25. A. G. Fox and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J. 40, 453-488 (1960).
  26. R. L. Sanderson and W. Streifer, "Comparison of laser mode calculations," Appl. Opt. 8, 131-136 (1969). [CrossRef] [PubMed]
  27. A. E. Siegman and H. Y. Miller, "Unstable optical resonator loss calculations using the Prony method," Appl. Opt. 9, 2729-2736 (1970). [CrossRef] [PubMed]
  28. M. D. Feit and J. A. Fleck, "Spectral approach to optical resonator theory," Appl. Opt. 20, 2843-2851 (1981). [CrossRef] [PubMed]
  29. K. Altmann, C. Pflaum, and D. Seider, "Three-dimensional finite element computation of laser cavity eigenmodes," Appl. Opt. 43, 1892-1901 (2004). [CrossRef] [PubMed]
  30. C. J. Hood, H. J. Kimble, and J. Ye, "Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in optical cavity," Phys. Rev. A 64, 033804 (2001). [CrossRef]
  31. A. Ciattoni, B. Crosignani, and P. Di Porto, "Vectorial free space optical propagation: a simple approach for generating all-order nonparaxial corrections," Opt. Commun. 177, 9-13 (2000). [CrossRef]
  32. maple 9 software program, Waterloo Maple Inc., 57 Erb Street West, Waterloo, Ontario, Canada.
  33. matlab 6.5 software, The MathWorks Inc., 3 Apple Hill Drive, Natick, Massachusetts USA.
  34. W. H. Carter, "Electromagnetic field of a Gaussian beam with elliptical cross section," J. Opt Soc. Am. 62, 1195-1201 (1972). [CrossRef]
  35. J. P. Gordon and H. Kogelnik, "Equivalence relations among spherical mirror optical resonators," Bell Syst. Tech. J. 43, 2873-2886 (1964).
  36. C. J. R. Sheppard and P. Török, "Dependence of focal shift on Fresnel number and angular aperture," Opt. Lett. 23, 1803-1804 (1998). [CrossRef]
  37. L. A. Vainshtein, "Open resonators for lasers," Sov. Phys. JETP 17, 709-719 (1963).
  38. A. E. Siegman, Lasers (University Science Books, 1986), p. 770.
  39. S. Riyopoulos, D. Dialetis, J. Inman, and A. Phillips, "Active-cavity vertical-cavity surface-emitting laser eigenmodes with simple analytic representation," J. Opt. Soc. Am. B 18, 1268-1284 (2001). [CrossRef]
  40. C. J. R. Sheppard and S. Saghafi, "Beam modes beyond the paraxial approximation: a scalar treatment," Phys. Rev. A 57, 2971-2979 (1998). [CrossRef]
  41. C. J. R. Sheppard and S. Saghafi, "Electromagnetic Gaussian beams beyond the paraxial approximation," J. Opt. Soc. Am. A 16, 1381-1386 (1999). [CrossRef]
  42. D. H. Foster and J. U. Nöckel, "Spatial and polarization structure in microdome resonators: effects of a Bragg mirror," Proc. SPIE 5333, 195-203 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited