OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 28 — Oct. 1, 2007
  • pp: 6907–6911

Impact of relative intensity noise of vertical-cavity surface-emitting lasers on optics-based micromachined audio and seismic sensors

Robert Littrell, Neal A. Hall, Murat Okandan, Roy Olsson, and Darwin Serkland  »View Author Affiliations

Applied Optics, Vol. 46, Issue 28, pp. 6907-6911 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1587 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The relative intensity noise of vertical-cavity surface-emitting lasers (VCSELs) in the 100 mHz  to  50 kHz frequency range is experimentally investigated using two representative single-mode VCSELs. Measurements in this frequency range are relevant to recently developed optical-based micromachined acoustic and accelerometer sensing structures that utilize VCSELs as the light source to form nearly monolithic 1 mm 3 packages. Although this frequency regime is far lower than the gigahertz range relevant to optical communication applications for which VCSELs are primarily designed, the intensity noise is found to be low and well within the range of cancellation using basic reference detection principles.

© 2007 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:

Original Manuscript: March 26, 2007
Revised Manuscript: July 25, 2007
Manuscript Accepted: August 4, 2007
Published: September 21, 2007

Robert Littrell, Neal A. Hall, Murat Okandan, Roy Olsson, and Darwin Serkland, "Impact of relative intensity noise of vertical-cavity surface-emitting lasers on optics-based micromachined audio and seismic sensors," Appl. Opt. 46, 6907-6911 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. A. Hall, R. Littrell, M. Okandan, B. Bicen, and F. L. Degertekin, "Micromachined optical microphones with low thermal-mechanical noise levels," J. Acoust. Soc. Am. (to be published). [PubMed]
  2. F. L. Degertekin, N. A. Hall, and W. Lee, "Capacitive micromachined ultrasonic transducers (cMUTs) with integrated optoelectronic readout," in IEEE Ultrasonics Symposium (IEEE, 2001), pp. 875-881.
  3. N. A. Hall, W. Lee, J. Dervan, and F. L. Degertekin, "Micromachined capacitive transducers with improved optical detection for ultrasound applications in air," in IEEE Ultrasonics Symposium (IEEE, 2002), pp. 1027-1030.
  4. W. Lee, N. A. Hall, and F. L. Degertekin, "Micromachined acoustic sensor array with diffraction-based optical interferometric detection," Proc. SPIE 4985, 140-151 (2003). [CrossRef]
  5. W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, "Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout," IEEE J. Sel. Top. Quantum Electron. 10, 643-651 (2004). [CrossRef]
  6. C. Weili, B. Bicen, N. A. Hall, S. A. Jones, F. L. Degertekin, and R. N. Miles, "Optical sensing in a directional MEMS microphone inspired by the ears of the parasitoid fly, Ormia ochracea," in Micro Electro Mechanical Systems (IEEE, 2006), pp. 614-617.
  7. C. Gibbons and R. N. Miles, "Design of a biomimetic directional microphone diaphragm," ASME, Noise Control and Acoustics Division (Publication) NCA (ASME, 2000), Vol. 27, pp. 173-179.
  8. F. Tejada, A. G. Andreou, J. A. Miraqliotta, R. Osiander, and D. Wesolek, "Silicon on sapphire CMOS architectures for interferometric array readout," in IEEE International Symposium on Circuits and Systems (IEEE, 2004), pp. 880-883.
  9. F. Tejada, D. Wesolek, J. Lehtonen, J. A. Mirragliotta, A. G. Andreou, and R. Osiander, "An SOS MEMS interferometer," Proc. SPIE 5346, 27-36 (2004).
  10. E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, "High-resolution micromachined interferometric accelerometer," Appl. Phys. Lett. 76, 3316-3318 (2000). [CrossRef]
  11. D. S. Greywall, "Micromachined optical-interference microphone," Sens. Actuators A 75, 257-268 (1999). [CrossRef]
  12. D. Wiedenmann, M. Kicherer, C. Jung, M. Grabherr, M. Miller, R. Jager, and K. J. Ebeling, "Sub-Poissonian intensity noise from vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 75, 3075-3077 (1999). [CrossRef]
  13. D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 860 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998). [CrossRef]
  14. P. Signoret, G. Belleville, and B. Orsal, "Experimental investigation of the 1/f amplitude noise of vertical-cavity surface-emitting lasers," Fluct. Noise Lett. 1, L1-L5 (2001). [CrossRef]
  15. P. C. D. Hobbs, "Ultrasensitive laser measurements without tears," Appl. Opt. 36, 903-920 (1997). [CrossRef] [PubMed]
  16. N. Bilaniuk, "Optical microphone transduction techniques, Appl. Acoust. 50, 35-63 (1997). [CrossRef]
  17. M. Stanacevic, G. Cauwengberghs, and G. Zweig, "Gradient flow adaptive beamforming and signal separation in a miniature microphone array," in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2002), pp. 416-419.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited