OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 28 — Oct. 1, 2007
  • pp: 7049–7053

Spatial effect on the interference of light propagated in a film structure

Ming-Yu Sheng, Yun-Hua Wu, Shou-Zhi Feng, Yue-Rui Chen, Yu-Xiang Zheng, and Liang-Yao Chen  »View Author Affiliations


Applied Optics, Vol. 46, Issue 28, pp. 7049-7053 (2007)
http://dx.doi.org/10.1364/AO.46.007049


View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interference of light has been analyzed for a film structure by considering that a spatial separation exists for the two neighboring light beams to be interfered in the space. There is a significant difference between the situations of the interference with or without consideration of the spatial effect, especially around the region where the phase delay δ = π and 2π by taking the example of the one-layered SiO 2 / Si structure. It is reasonable to extract the optical parameters by neglecting the spatial effect only for the thinner film with a thickness much smaller than a wavelength, which satisfies the condition that δ < π ; otherwise, the film equation used for the periodic or nonperiodic structures will be modified by including the spatial effect in the data analysis and applications.

© 2007 Optical Society of America

OCIS Codes
(260.3160) Physical optics : Interference
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Physical Optics

History
Original Manuscript: June 8, 2007
Revised Manuscript: August 9, 2007
Manuscript Accepted: August 13, 2007
Published: September 27, 2007

Citation
Ming-Yu Sheng, Yun-Hua Wu, Shou-Zhi Feng, Yue-Rui Chen, Yu-Xiang Zheng, and Liang-Yao Chen, "Spatial effect on the interference of light propagated in a film structure," Appl. Opt. 46, 7049-7053 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-28-7049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. I. Kolobov, “The spatial behavior of nonclassical light,” Rev. Mod. Phys. 71, 1539–1589 (1999). [CrossRef]
  2. V. N. Beskrovnyy, M. I. Kolobov, “Quantum limits of superresolution in reconstruction of optical objects,” Phys. Rev. A 71, 043802 (2005). [CrossRef]
  3. M. I. Kolobov, C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett. 85, 3789–3792 (2000). [CrossRef] [PubMed]
  4. S. Feng, O. Pfister, “Quantum interference of ultrastable twin optical beams,” Phys. Rev. Lett. 92, 203601 (2004). [CrossRef] [PubMed]
  5. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999). [CrossRef]
  6. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Chaps. 1 and 7.
  7. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  8. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. A. Ozin, O. Toader, H. M. Van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000). [CrossRef] [PubMed]
  9. Y. A. Vlasov, S. Petit, G. Klein, B. Honerlage, C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999). [CrossRef]
  10. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  11. J. Poirson, T. Lanternier, J. C. Cotteverte, “Jones matrices of a quarter-wave plate for Gaussian beams,” Appl. Opt. 34, 6806–6818 (1995). [CrossRef] [PubMed]
  12. E. Nichelatti, G. Salvetti, “Spatial and spectral response of a Fabry–Perot interferometer illuminated by a Gaussian beam,” Appl. Opt. 34, 4703–4712 (1995). [CrossRef] [PubMed]
  13. F. Moreno, F. Gonzalez, “Transmission of a Gaussian beam of low divergence through a high-finesse Fabry–Perot device,” J. Opt. Soc. Am. A 9, 2173–2175 (1992). [CrossRef]
  14. D. Guo, R. Lin, W. Wang, “Gaussian-optics-based optical modeling and characterization of a Fabry–Perot microcavity for sensing applications,” J. Opt. Soc. Am. A 22, 1577–1589 (2005). [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2005), Chap. 3.
  16. F. S. Levin, An Introduction to Quantum Theory (Cambridge U. Press, 2002), Chap. 7.
  17. M. V. Klein, Optics (Wiley, 1970), Chap. 5.
  18. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1985).
  19. L. Y. Chen, X. W. Feng, Y. Su, Y. Han, H. Z. Ma, Y. H. Qian, “Design of scanning ellipsometer by rotating synchronously the polarizer and analyzer,” Appl. Opt. 33, 1299–1305 (1994). [CrossRef] [PubMed]
  20. G. E. Jellison, “Examination of thin SiO2 films on Si using spectroscopic polarization modulation ellipsometry,” J. Appl. Phys. 69, 7627–7634 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited