OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 29 — Oct. 10, 2007
  • pp: 7083–7090

Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection

M. A. Gondal and Z. H. Yamani  »View Author Affiliations

Applied Optics, Vol. 46, Issue 29, pp. 7083-7090 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ozone ( O 3 ) gas sensor with a sensitivity of parts per 10 9 (ppb) level and a high level of selectivity based on the resonant photoacoustic effect was developed using an electronically modulated cw CO 2 laser beam. Quite different from the standard chopper modulation of a laser beam, here the laser source was electronically modulated to overcome the inherent problem of frequency instability associated with chopper modulation. With electronic modulation, in conjunction with the fast Fourier transform (FFT) of transient signals, we were able to improve significantly the sensitivity of the photoacoustic (PA) system for the detection of O 3 . In addition to the improved sensitivity, our method proved that the FFT of a laser modulated PA signal could suppress the noise signal generated by spurious window diffused absorption, which in the case of most commonly used lock-in techniques is rather unavoidable. The dependence of the PA signal on various experimental parameters such as buffer gas, laser power, modulation frequency, and trace gas concentration was investigated. In the case of buffer gas, argon proved to be more suitable than nitrogen and helium in terms of enhancing the sensitivity of the system. The limits of detection of O 3 using the 9 P(14) CO 2 laser line in our PA system are 5 parts per 10 9 by volume (ppbv) and 14 ppbv with electronic and standard chopper modulation, respectively. This detection limit of O 3 is quite applicable for detection of safe levels of O 3 , at ground level.

© 2007 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6430) Spectroscopy : Spectroscopy, photothermal

ToC Category:

Original Manuscript: February 27, 2007
Revised Manuscript: July 31, 2007
Manuscript Accepted: August 6, 2007
Published: October 1, 2007

M. A. Gondal and Z. H. Yamani, "Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection," Appl. Opt. 46, 7083-7090 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. C. Bliefert, Umweltchemie, VCH Verlagsgesellschaft (Weinheim, 1995).
  2. G. Sonnemann, Ozon: Natürliche Schwankungen und anthropogene Einflüsse (Akademie Verlag Berlin, 1992).
  3. H. Tomiyasu and G. Gordon, "Colorimetric determination of ozone in water based on reaction with bis(terpyridine) iron(II)," Anal. Chem. 56, 752-754 (1984). [CrossRef]
  4. M. R. Straka, G. Gordon, and G. E. Pacey, "Residual aqueous ozone determination by gas-diffusion flow-injection analysis," Anal. Chem. 57, 1799-1803 (1985). [CrossRef]
  5. H. Bader and J. Hoigne, "Determination of ozone in water by the indigo method--a submitted standard method," Ozone: Sci. Eng. 4, 169-176 (1982). [CrossRef]
  6. I. C. Cohen, A. F. Smith, and R. Wood, "Field method for the determination of ozone in the presence of nitrogen dioxide," Analyst (Cambridge, U.K.) 93, 507-511 (1968). [CrossRef]
  7. K. Takeuchi and T. Ibusuki, "Quantitative determination of aqueous-phase ozone by chemiluminescence using indigo-5, 5′-disulfonate," Anal. Chem. 61, 619-623 (1989). [CrossRef] [PubMed]
  8. R. Guicherit, "Ozone analysis by chemiluminescence measurement," Anal. Bioanal. Chem. 256, 177-182 (1971).
  9. A. Ben-Jebria, S. C. Hu, and J. S. Ultman, "Improvements in a chemiluminescent ozone analyzer for respiratory applications," Rev. Sci. Instrum. 61, 3435-3439 (1990). [CrossRef]
  10. U. Schurath, W. Speuser, and R. Schmidt, "Principle and application of a fast sensor for atmospheric ozone," Fresenius J. Anal. Chem. 340, 544-547 (1991). [CrossRef]
  11. H. Güsten and U. Schurath, "A novel ozone sensor with various environmental applications," PTB-Mitt. 103, 324-328 (1993).
  12. V. Yushkow, A. Oulanovsky, N. Lechenuk, I. Roudakov, K. Arshinov, F. Tikhonov, and L. Stefanutti, "A chemiluminescent analyzer for stratospheric measurements of the ozone concentration (Fozan)," J. Atmos. Oceanic Technol. 16, 1345-1350 (1999). [CrossRef]
  13. S. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode laser sensor for monitoring multiple combustion parameters in pulse detonation engines," Proc. Combust. Inst. 28, 587-594 (2000). [CrossRef]
  14. M. G. De Silva, H. Vargas, A. Miklos, and P. Hess, "Photoacoustic detection of ozone using a quantum cascade laser," Appl. Phys. B 78, 677-680 (2004). [CrossRef]
  15. L. Menzel, A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, "Spectroscopic detection of biological NO with a quantum cascade laser," Appl. Phys. B 72, 859-863 (2001).
  16. H. S. M. de Vries, M. A. J. Wasano, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, and J. Reuss, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by laser photothermal deflection and photoacoustic techniques," Postharvest Biol. Technol. 8, 1-10 (1996). [CrossRef]
  17. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998). [CrossRef]
  18. P. L. Meyer and M. W. Sigrist, "Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques," Rev. Sci. Instrum. 61, 1779-1807 (1990). [CrossRef]
  19. P. V. Cvijin, D. A. Gilmore, and G. H. Atkinson, "Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy," Appl. Spectrosc. 42, 770-774 (1988). [CrossRef]
  20. I. G. Callasso and M. W. Sigrist, "Selection criteria for microphones used in pulsed nonresonant gas-phase photoacoustics," Rev. Sci. Instrum. 70, 4569-4578 (1999). [CrossRef]
  21. M. A.Gondal, M. H. Shwehdi, and M. A. Baig, "Laser sensor for detection of SF6 leaks in high power insulated switchgear systems," IEEE Trans. Dielectr. Electr. Insul. 9, 421-427 (2002). [CrossRef]
  22. M. A. Gondal and J. Mastromarino, "Pulsed laser photoacoustic detection of SO2 near 225.7 nm," Appl. Opt. 40, 2010-2016 (2001). [CrossRef]
  23. M. A. Gondal, I. A. Bakhtiari, and S. M. A Durrani, "Spectroscopy of trace gases using a pulsed optoacoustic technique," J. Anal. At. Spectrom. 13, 455-458 (1998). [CrossRef]
  24. H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, "On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy," Appl. Phys. B 70, 275-280 (2000). [CrossRef]
  25. M. A. Gondal, "Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants," Appl. Opt. 36, 3195-3201 (1997). [CrossRef] [PubMed]
  26. M. A. Gondal, A. Dastageer, and M. H. Shwehdi, "Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries," Talanta 62, 131-141 (2004). [CrossRef]
  27. P. Hess, "Resonant photoacoustic spectroscopy," in Topics in Current Chemistry (Springer Verlag, 1983), Vol. 111.
  28. C. Horenberger, M. Konig, S. B. Rai, and W. Demtroder, "Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color-center laser at 1.5 μm," Chem. Phys. Lett. 190, 171-177 (1995).
  29. J. Davidson, J. H. Gutow, and R. N. Zare, "Experimental improvements in recording gas-phase photoacoustic spectra," J. Phys. Chem. 94, 4069-4073 (1990). [CrossRef]
  30. F. J. M. Harren, J. Reuss, E. J. Woltering, and D. D. Bicanic, "Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below the ppb level," Appl. Spectrosc. 44, 1360-1368 (1990). [CrossRef]
  31. H. S. M. deVries, "Nonintrusive fruit and plant analyses by laser photothermal measurements of ethylene emission," in Fruit and Nut Analyses, H. F. Linskens, ed. (Springer Verlag, 1996), pp. 1-18. [CrossRef]
  32. A. Thöny and M. W. Sigrist, "New developments in CO2 laser photoacoustic monitoring of trace gas," Infrared Phys. Technol. 36, 585-615 (1995). [CrossRef]
  33. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 Molecular Spectroscopic Database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited