OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 29 — Oct. 10, 2007
  • pp: 7110–7116

Wavefront sensor architectures fully embedded in an image sensor

Jérôme Vaillant  »View Author Affiliations


Applied Optics, Vol. 46, Issue 29, pp. 7110-7116 (2007)
http://dx.doi.org/10.1364/AO.46.007110


View Full Text Article

Enhanced HTML    Acrobat PDF (889 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several architectures of wavefront sensors have been developed since the rise of adaptive optics. In all cases, optical elements are placed in front of image sensors. This makes the sensor quite bulky, expensive, and sensitive to optical misalignment. I propose two novel architectures fully embedded in the image sensor that require no additional optical element. The sensor can be placed directly in the beam to analyze, leading to small, easy to use, and cost-efficient systems. The two architectures are described before testing by simulation of their ability to sense the wavefront distortion and their sensitivity to signal-to-noise ratio.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(040.0040) Detectors : Detectors

ToC Category:
Detectors

History
Original Manuscript: April 27, 2007
Revised Manuscript: July 16, 2007
Manuscript Accepted: July 16, 2007
Published: October 3, 2007

Citation
Jérôme Vaillant, "Wavefront sensor architectures fully embedded in an image sensor," Appl. Opt. 46, 7110-7116 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-29-7110


Sort:  Year  |  Journal  |  Reset  

References

  1. M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC Press, 1996).
  2. D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, "Amplitude and phase beam characterization using a two-dimensional wavefront sensor," Proc. SPIE 2870, 72-82 (1996).
  3. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wavefront sensor," Appl. Opt. 40, 366-374 (2001). [CrossRef]
  4. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006). [CrossRef]
  5. F. Díaz-Doutón, J. Pujol, M. Arjona, and S. O. Luque, "Curvature sensor for ocular wavefront measurement," Opt. Lett. 31, 2245-2247 (2006). [CrossRef]
  6. S. R. Chamot, C. Dainty, and S. Esposito, "Adaptive optics for ophthalmic applications using a pyramid wavefront sensor," Opt. Express 14, 518-526 (2006). [CrossRef]
  7. C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, "Metrology of thin transparent optics using Shack-Hartmann wavefront sensing," Opt. Eng. 43, 742-753 (2004). [CrossRef]
  8. F. Rigaut, B. L. Ellerbroek, and M. J. Northcott, "Comparison of curvature-based and Shack-Hartmann-based adaptive optics for the Gemini telescope," Appl. Opt. 36, 2856-2868 (1997).
  9. T. Y. Chew, R. M. Clare, and R. G. Lane, "A comparison of the Shack-Hartmann and pyramid wavefront sensors," Opt. Commun. 268, 189-195 (2006). [CrossRef]
  10. J. D. Mansell, P. B. Catrysse, E. K. Gustafson, and R. L. Byer, "Silicon deformable mirrors and CMOS-based wavefront sensors," Proc. SPIE 4124, 15-25 (2000). [CrossRef]
  11. D. W. de Lima Monteiro, G. Vdovin, and P. M. Sarro, "High-speed wavefront sensor compatible with standard CMOS technology," Sens. Actuators A 109, 220-230 (2004). [CrossRef]
  12. O. La Schiazza, T. Nirmaier, M. Han, and J. Bille, "A custom CMOS-based Hartmann-Shack wavefront sensor," Invest. Ophthalmol. Visual Sci. 46, 2002-B771 (2005). [CrossRef]
  13. E. R. Fossum, "Active pixel sensors: are CCDs dinosaurs?" Proc. SPIE 1900, 2-14 (1993). [CrossRef]
  14. E. Fossum, "CMOS image sensors: electronic camera-on-a-chip," IEEE Trans. Electron. Devices 44, 1689-1698 (1997). [CrossRef]
  15. S. U. Ay, M. P. Lesser, and E. R. Fossum, "CMOS active pixel sensor (APS) imager for scientific applications," Proc. SPIE 4836, 271-278 (2002). [CrossRef]
  16. A. El Gamal and H. Eltoukhy, "CMOS image sensors: an introduction to the technology, design, and performance limits, presenting recent developments and future directions," IEEE Circuits Devices Mag. 21(3), 6-20 (2005). [CrossRef]
  17. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, "Review of CMOS image sensors," Microelectron. J. 37, 433-451 (2006). [CrossRef]
  18. M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, and A. Izumi, "Microlens design using simulation program for CCD image sensor," IEEE Trans. Consumer Electronics 38, 583-589 (1992). [CrossRef]
  19. S. U. Lee, J. L. Park, J. S. Choi, and J. G. Lee, "The fabrication process and characteristics of light loss free zero-space microlenses for CMOS image sensor," Proc. SPIE 5754, 1241-1248 (2005). [CrossRef]
  20. Y.-T. Fan, C.-S. Peng, and C.-Y. Chu, "Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors," Proc. SPIE 4115, 263-274 (2000). [CrossRef]
  21. H.-J. Hsu, F.-T. Weng, C.-K. Chang, and Y.-K. Hsiao, "Microlens design for compact lens system," Proc. SPIE 5116, 640-646 (2003). [CrossRef]
  22. D. A. Baillie and J. E. Gendler, "Zero-space microlenses for CMOS image sensors: optical modeling and lithographic process development," Proc. SPIE 5377, 953-959 (2004). [CrossRef]
  23. J. Vaillant and F. Hirigoyen, "Optical simulation for CMOS imager microlens optimization," Proc. SPIE 5459, 200-210 (2004). [CrossRef]
  24. G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in color CMOS image sensor," IEEE Trans. Electron. Devices 50, 4-11 (2003). [CrossRef]
  25. M. Mori, M. Katsuno, S. Kasuga, T. Murata, T. Yamaguchi, M. Ind, and J. Kyoto, "A 1/4 in. 2M pixel CMOS image sensor with 1.75 transistor/pixel," Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf. 1, 110-111 (2004).
  26. M. Cohen, F. Roy, D. Hrault, Y. Cazaux, A. Gandolfi, J. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, "Fully optimized Cu based process with dedicated cavity etch for 1.75 m and 1.45 m pixel pitch CMOS image sensor," in IEEE International Electron Devices Meeting (2006).
  27. J. Herrmann, "Cross coupling and aliasing in modal wavefront estimation," J. Opt. Soc. Am. 71, 989-992 (1981).
  28. F. J. Rigaut, J.-P. Veran, and O. Lai, "Analytical model for Shack-Hartmann-based adaptive optics systems," Proc. SPIE 3353, 1038-1048 (1998). [CrossRef]
  29. L. A. Poyneer and B. Macintosh, "Spatially filtered wavefront sensor for high-order adaptive optics," J. Opt. Soc. Am. A 21, 810-819 (2004). [CrossRef]
  30. M. A. van Dam, "Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy," J. Opt. Soc. Am. A 22, 1509-1514 (2005). [CrossRef]
  31. R. G. Lane, A. Glindemann, and J. C. Dainty, "Simulation of a Kolmogorov phase screen," Waves Random Media 2, 209-224 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited