OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 29 — Oct. 10, 2007
  • pp: 7120–7131

Fabry–Perot interferometer based Mie Doppler lidar for low tropospheric wind observation

Haiyun Xia, Dongsong Sun, Yuanhong Yang, Fahua Shen, Jingjing Dong, and Takao Kobayashi  »View Author Affiliations

Applied Optics, Vol. 46, Issue 29, pp. 7120-7131 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1800 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Similar in principle to recent implementations of a lidar system at 355 nm [Opt. Lett. 25, 1231 (2000), Appl. Opt. 44, 6023 (2005)], an incoherent-detection Mie Doppler wind lidar at 1064 nm was developed and deployed in 2005 [Opt. Rev. 12, 409 (2005)] for wind measurements in the low troposphere, taking advantage of aerosol scattering for signal enhancement. We present a number of improvements made to the original 1064 nm system to increase its robustness for long-period operation. These include a multimode fiber for receiving the reference signal, a mode scrambler to allow uniform illumination over the Fabry–Perot interferometer, and a fast scannable Fabry–Perot interferometer for calibration and for the determination of outgoing laser frequency during the wind observation. With these improvements in stability, the standard deviation of peak transmission and FWHM of the Fabry–Perot interferometer was determined to be 0.49% and 0.36%, respectively. The lidar wind measurements were validated within a dynamic range of ± 40 m / s . Comparison experiments with both wind profiler radar and Vaisala wiresonde show good agreement with expected observation error. An example of 24 h continuous observations of wind field and aerosol backscatter coefficients in the boundary layer with 1 min and 30   m temporal and spatial resolution and 3 m∕s tolerated wind velocity error is presented and fully demonstrates the stability and robustness of this lidar.

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 25, 2007
Revised Manuscript: July 30, 2007
Manuscript Accepted: August 8, 2007
Published: October 3, 2007

Haiyun Xia, Dongsong Sun, Yuanhong Yang, Fahua Shen, Jingjing Dong, and Takao Kobayashi, "Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation," Appl. Opt. 46, 7120-7131 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. World Meteorological Organization, "Preliminary statement of guidance regarding how well satellite capabilities meet WMO user requirements in several application areas," WMO Satellite Reports SAT-21, WMO/TD 913 (1998).
  2. W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. R Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, "Lidar-measured winds from space: a key component for weather and climate prediction," Bull. Am. Meteorol. Soc. 76, 869-888 (1995). [CrossRef]
  3. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. A. Richter, and B. F. Weber, "Wind measurement accuracy of the NOAA pulsed infrared Doppler," Appl. Opt. 23, 2503-2506 (1987). [CrossRef]
  4. R. M. Huffaker and R. M. Hardesty, "Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems," Proc. IEEE 84, 181-204 (1996). [CrossRef]
  5. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989). [CrossRef]
  6. A. Garnier and M. L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992). [CrossRef]
  7. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, "Theory of the double-edge technique for Doppler lidar wind measurement," Appl. Opt. 37, 3097-3104 (1998). [CrossRef]
  8. C. Flesia and C. L. Korb, "Theory of the double-edge molecular technique for Doppler lidar wind measurement," Appl. Opt. 38, 432-440 (1999). [CrossRef]
  9. J. Wu, J. Wang, and P. B. Hays, "Performance of a circle-to-line optical system for a Fabry-Perot interferometer: a laboratory study," Appl. Opt. 33, 7823-7828 (1994). [CrossRef] [PubMed]
  10. T. D. Irgang, P. B. Hays, and W. R. Skinner, "Two-channel direct-detection Doppler lidar employing a charge-coupled device as a detector," Appl. Opt. 41, 1145-1155 (2002). [CrossRef] [PubMed]
  11. C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).
  12. Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-Q. Song, J. W. Hair, and C. Y. She, "Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter," Appl. Opt. 41, 7079-7086 (2002). [CrossRef] [PubMed]
  13. J. A. McKay, "Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar," Appl. Opt. 41, 1760-1767 (2002). [CrossRef] [PubMed]
  14. D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, "Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer," Appl. Opt. 43, 173-182 (2004). [CrossRef] [PubMed]
  15. J. A. McKay, "Modeling of direct-detection Doppler wind lidar. I. The edge technique," Appl. Opt. 37, 6480-6486 (1998). [CrossRef]
  16. J. A. McKay, "Modeling of direct-detection Doppler wind lidar. II. The fringe imaging technique," Appl. Opt. 37, 6487-6493 (1998). [CrossRef]
  17. M. J. McGill and J. D. Spinhirne, "Comparison of two direct-detection Doppler lidar techniques," Opt. Eng. 37, 2675-2686 (1998). [CrossRef]
  18. Y. Durand, A. Culoma, R. Meynart, D. Morançais, and F. Fabre, "Predevelopment of a direct-detection Doppler wind lidar for ADM/AEOLUS mission," in Sensors, Systems, and Next-Generation Satellites VII, R. Meynart, S. P. Neeck, H. Shimoda, J. B. Lurie, and M. L. Aten, eds., Proc. SPIE 5234, 354-363 (2004).
  19. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999). [CrossRef]
  20. C. Souprayen, A. Garnier, and A. Hertzog, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration," Appl. Opt. 38, 2422-2431 (1999). [CrossRef]
  21. C. Flesia, C. L. Korb, and C. Hirt, "Double-edge molecular measurement of lidar wind profiles at 355 nm," Opt. Lett. 25, 1466-1468 (2000). [CrossRef]
  22. B. M. Gentry, H. Chen, and S. X. Li, "Wind measurements with 355 nm molecular Doppler lidar," Opt. Lett. 25, 1231-1233 (2000). [CrossRef]
  23. V. J. Abreu, J. E. Barnes, and P. B. Hays, "Observations of winds with an incoherent lidar detector," Appl. Opt. 31, 4509-4514 (1992). [CrossRef] [PubMed]
  24. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995). [CrossRef]
  25. C. L. Korb, B. M. Gentry, and S. X. Li, "Edge technique Doppler lidar wind measurements with high vertical resolution," Appl. Opt. 36, 5976-5983 (1997). [CrossRef] [PubMed]
  26. M. J. McGill, W. R. Skinner, and T. D. Irgang, "Validation of wind profiles measured with incoherent Doppler lidar," Appl. Opt. 36, 1928-1938 (1997). [CrossRef] [PubMed]
  27. M. Imaki and T. Kobayashi, "Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties," Appl. Opt. 44, 6023-6030 (2005). [CrossRef] [PubMed]
  28. G. Tenti, C. D. Boley, and R. D. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).
  29. J. D. Klett, "Stable analytical inversion solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  30. J. D. Klett, "Lidar inversion with variable backscatter extinction ratios," Appl. Opt. 24, 1638-1643 (1985). [CrossRef] [PubMed]
  31. F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  32. D. Sun, Z., Zhong, J. Zhou, H. Hu, and T. Kobayashi, "Accuracy analysis of the Fabry-Perot based Doppler wind lidar," Opt. Rev. 12, 409-414 (2005). [CrossRef]
  33. C. J. Grand and E. Eloranta, "Fiber-optic scrambler reduces the bandpass range dependence of Fabry-Perot etalons used for spectral analysis of lidar backscatter," Appl. Opt. 30, 2668-2670 (1991). [CrossRef]
  34. T. Ida, M. Ando, and H. Toraya, "Extended pseudo-Voigt function for approximating the Voigt profile," J. Appl. Crystallogr. 33, 1311-1316 (2000). [CrossRef]
  35. H. Xia, D. Sun, Z. Zhong, B. Wang, J. Dong, F. Shen, M. Chen, and X. Zhou, "A design of verifying attachment for calibration of wind lidar," Chin. J. Lasers 33, 1412-1416 (2006) (in Chinese).
  36. B. J. Rye, "Comparative precision of distributed-backscatter Doppler lidars," Appl. Opt. 34, 8341-8344 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited