OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 29 — Oct. 10, 2007
  • pp: 7162–7171

Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis

Damien Weidmann, William J. Reburn, and Kevin M. Smith  »View Author Affiliations


Applied Optics, Vol. 46, Issue 29, pp. 7162-7171 (2007)
http://dx.doi.org/10.1364/AO.46.007162


View Full Text Article

Enhanced HTML    Acrobat PDF (1945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Following the recent development of a ground-based prototype quantum cascade laser heterodyne radiometer operating in the midinfrared, atmospheric ozone profile retrievals from a solar occultation measurement campaign performed at the Rutherford Appleton Laboratory on 21 September 2006 are presented. Retrieval is based on the optimal estimation method. High resolution ( 0.0073 cm 1 ) atmospheric spectra recorded by the laser heterodyne radiometer and covering a microwindow ( 1033.8 1034.5 cm 1 ) optimized for atmospheric ozone measurements were used as measurement vectors. As part of the evaluation of this novel instrument, a comprehensive analysis of the retrievals is presented, demonstrating the high potential of quantum cascade laser heterodyne radiometry for atmospheric sounding. Vertical resolutions of 2 km near the ground and about 3 km in the stratosphere were obtained. The information content of the retrieval was found to be up to 48 bits, which is much higher than any other passive ground-based instrument. Frequency mismatches of several absorption peaks between the forward model and experimental spectra have been observed and significantly contribute to the retrieval noise error in the upper-troposphere lower-stratosphere region. Retrieved ozone vertical profiles were compared to ozonesonde data recorded at similar latitudes. The agreement is generally excellent except for the 20 to 25 km peak in ozone concentration, where ozonesonde data were found to be 20% lower than the amount retrieved from the laser heterodyne radiometer spectra. Quantum cascade laser based heterodyne radiometry in the midinfrared has been demonstrated to provide high spectral resolution and unprecedented vertical resolution for a passive sounder in a highly compact and mechanically simple package.

© 2007 Optical Society of America

OCIS Codes
(010.4950) Atmospheric and oceanic optics : Ozone
(040.2840) Detectors : Heterodyne
(040.3060) Detectors : Infrared
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5630) Instrumentation, measurement, and metrology : Radiometry

ToC Category:
Detectors

History
Original Manuscript: June 14, 2007
Revised Manuscript: August 21, 2007
Manuscript Accepted: August 22, 2007
Published: October 4, 2007

Citation
Damien Weidmann, William J. Reburn, and Kevin M. Smith, "Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis," Appl. Opt. 46, 7162-7171 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-29-7162


Sort:  Year  |  Journal  |  Reset  

References

  1. D. Weidmann, W. J. Reburn, and K. Smith, "Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies," Rev. Sci. Instrum. 78, 073107 (2007). [CrossRef] [PubMed]
  2. P. L. Kinney, "The pulmonary effects of ozone and particle air pollution," Sem. Respir. Crit. Care Med. 20, 601-607 (1999). [CrossRef]
  3. R. T. Menzies and R. K. Seals, "Ozone monitoring with an infrared heterodyne radiometer," Science 197, 1275-1277 (1977). [CrossRef] [PubMed]
  4. M. A. Frerking and D. J. Muehler, "Infrared heterodyne spectroscopy of atmospheric ozone," Appl. Opt. 16, 526-528 (1977). [CrossRef] [PubMed]
  5. M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, "Stratospheric ozone measurement with an infrared heterodyne spectrometer," Geophys. Res. Lett. 5, 317-320 (1978). [CrossRef]
  6. M. Taguchi, S. Okano, H. Fukunishi, and Y. Sasano, "Comparison of ozone profiles from ground-based laser heterodyne spectrometer and ozonesonde measurements," Geophys. Res. Lett. 17, 2349-2352 (1990). [CrossRef]
  7. Y. J. Meijer, D. P. J. Swart, F. Baier, P. K. Bhartia, G. E. Bodeker, S. Casadio, K. Chance, F. Del Frate, T. Erbertseder, M. D. Felder, L. E. Flynn, S. Godin-Beekmann, G. Hansen, O. P. Hasekamp, A. Kaifel, H. M. Kelder, B. J. Kerridge, J.-C. Lambert, J. Landgraf, B. Latter, X. Liu, I. S. McDermid, Y. Pachepsky, V. Rozanov, R. Siddans, S. Tellmann, R. J. van der A, R. F. van Oss, M. Weber, and C. Zehner, "Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms," J. Geophys. Res. 111, D21306, doi:10.1029/2005JD006778 (2006). [CrossRef]
  8. P.-F. Coheur, B. Barret, S. Turquety, D. Hurtmans, J. Hadji-Lazaro, and C. Clerbaux, "Retrieval and characterization of ozone vertical profiles from a thermal infrared nadir sounder," J. Geophys. Res. 110, D24303, doi:10.1029/2005JD005845 (2005). [CrossRef]
  9. M. Palm, C. v. Savigny, T. Warneke, V. Velazco, J. Notholt, K. Künzi, J. Burrows, and O. Schrems, "Intercomparison of O3 profiles observed by SCIAMACHY and ground based microwave instruments," Atmos. Chem. Phys. 5, 2091-2098 (2005). [CrossRef]
  10. A. J. Geer, W. A. Lahoz, S. Bekki, N. Bormann, Q. Errera, H. J. Eskes, D. Fonteyn, D. R. Jackson, M. N. Juckes, S. Massart, V.-H. Peuch, S. Rharmili, and A. Segers, "The ASSET intercomparison of ozone analyses: method and first results," Atmos. Chem. Phys. 6, 5445-5474 (2006). [CrossRef]
  11. M. De Maziere, O. Hennen, and M. Van Roozendael, "Daily ozone vertical profile model built on geophysical grounds, for column retrieval from atmospheric high resolution infrared spectra," J. Geophys. Res. 104, D19, 23855-23869 (1999). [CrossRef]
  12. B. Barret, M. De Maziere, and P. Demoulin, "Retrieval and characterization of ozone profiles from solar infrared spectra at the Jungfraujoch," J. Geophy. Res. 107, D24, 4788, doi:10.1029/2001JD001298 (2002). [CrossRef]
  13. C. Brogniez, M. Houët, A. M. Siani, P. Weihs, M. Allaart, J. Lenoble, T. Cabot, A. de la Casinière, and E. Kyrö, "Ozone column retrieval from solar UV measurements at ground level: effects of clouds and results from six European sites," J. Geophys. Res. 110, D24202, doi:10.1029/2005JD005992 (2005). [CrossRef]
  14. X. Liu, K. Chance, C. E. Sioris, M. J. Newchurch, and T. P. Kurosu, "Tropospheric ozone profiles from a ground-based ultraviolet spectrometer: a new retrieval method," Appl. Opt. 45, 2352-2359 (2006). [CrossRef] [PubMed]
  15. P. Keckhut, S. McDermid, D. Swart, T. McGee, S. Godin-Beekmann, A. Adriani, J. Barnes, J.-L. Baray, H. Bencherif, H. Claude, A. G. di Sarra, G. Fiocco, G. Hansen, A. Hauchecorne, T. Leblanc, C. H. Lee, S. Pal, G. Megie, H. Nakane, R. Neuber, W. Steinbrecht, and J. Thayer, "Review of ozone and temperature lidar validations performed within the framework of the Network for the Detection of Stratospheric Change," J. Environ. Monito. 6, 721-733 (2004). [CrossRef]
  16. K. E. Fast, T. Kostiuk, F. Espenak, T. A. Livengood, T. Hewagama, and M. F. A'Hearn, "Stratospheric ozone profiles from Mauna Kea, Hawai'i (19.8N, 155.5W) using infrared heterodyne spectroscopy, 1988-2003," Geophys. Res. Lett. 31, L08109, doi:10.1029/2004GL019443 (2004). [CrossRef]
  17. K. Fast, T. Kostiuk, F. Espenak, J. Annen, D. Buhl, T. Hewagama, M. F. A'Hearn, D. Zipoy, T. A. Livengood, G. Sonnabend, and F. Smulling, "Ozone abundance on Mars from infrared heterodyne spectra. I. Acquisition, retrieval, and anticorrelation with water vapor," Icarus 181, 419-431 (2006). [CrossRef]
  18. C. D. Rodgers, "Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).
  19. I. Petropavlovskikh, P. K. Bhartia, and J. DeLuisi, "New Umkehr ozone profile retrieval algorithm optimized for climatological studies," Geophys. Res. Lett. 32, L16808, doi:10.1029/2005GL023323 (2005). [CrossRef]
  20. A. Dudhia, "Reference Forward Model software user's manual," www.atm.ox.ac.uk/RFM/sum.
  21. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M, Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quanti. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  22. "ECMWF data archive services," http://www.ecmwf.int/products/data/archive/.
  23. D. Weidmann, K. Smith, and B. Ellison, "Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 mm continuous-wave distributed-feedback quantum cascade laser," Appl. Opt. 46, 947-953 (2007). [CrossRef] [PubMed]
  24. M. Beekmann, G. Ancellet, D. Martin, C. Abonnel, G. Duverneuil, F. Eideliman, P. Bessemoulin, N. Fritz, and E. Gizard, "Intercomparison of tropospheric ozone profiles obtained by electrochemical sondes, a ground based lidar and an airborne UV-photometer," Atmos. Environ. 29, 1027-1042 (1995). [CrossRef]
  25. J. Staehelin and W. Schmid, "Trend analysis of the tropospheric ozone concentration utilizing the 20-years data set of the ozone balloon soundings over Payerne," Atmos. Environ. 25A, 1739-1749 (1991).
  26. X. Liu, K. Chance, C. E. Sioris, T. P. Kurosu, and M. J. Newchurch, "Intercomparison of GOME, ozonesonde, and SAGE II measurements of ozone: demonstration of the need to homogenize available ozonesonde data sets," J. Geophys. Res. 111, D14305, doi:10.1029/2005JD006718 (2006).
  27. "Total Ozone Mapping Spectrometer," http://jwocky.gsfc.nasa.gov/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited