OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 29 — Oct. 10, 2007
  • pp: 7202–7206

Controlling large-scale film morphology by phase manipulation in interference lithography

Cheng Lu, X. K. Hu, S. S. Dimov, and R. H. Lipson  »View Author Affiliations


Applied Optics, Vol. 46, Issue 29, pp. 7202-7206 (2007)
http://dx.doi.org/10.1364/AO.46.007202


View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental arrangement is described where a Babinet–Soleil compensator is inserted into the path of one of the three beams used for noncoplanar beam interference lithography. This birefringent element can change the phase of the beam so that either a positive two-dimensional pattern or an inverselike structure is generated in a photoresist without disturbing the mechanical geometry of the setup. Simulations are presented that confirm the validity of this approach. Large defect-free sample areas ( > 1 cm 2 ) with submicrometer periodic patterns were obtained by expanding the laser beams used in the lithography experiment.

© 2007 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(050.5080) Diffraction and gratings : Phase shift
(260.3160) Physical optics : Interference

ToC Category:
Physical Optics

History
Original Manuscript: July 6, 2007
Manuscript Accepted: August 24, 2007
Published: October 4, 2007

Citation
Cheng Lu, X. K. Hu, S. S. Dimov, and R. H. Lipson, "Controlling large-scale film morphology by phase manipulation in interference lithography," Appl. Opt. 46, 7202-7206 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-29-7202


Sort:  Year  |  Journal  |  Reset  

References

  1. S. R. J. Brueck, "Optical and interferometric lithography-nanotechnology enablers," Proc. IEEE 93, 1704-1721 (2005). [CrossRef]
  2. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  3. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  4. A. Shishido, I. B. Diviliansky, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan, and T. E. Mallouk, "Direct fabrication of two-dimensional titania arrays using interference photolithography," Appl. Phys. Lett. 79, 3332-3334 (2001). [CrossRef]
  5. A. Austin and F. T. Stone, "Fabrication of thin periodic structure in photoresist: a model," Appl. Opt. 15, 1071-1071 (1976). [CrossRef] [PubMed]
  6. C. J. M. van Rijn, "Laser interference as a lithographic nanopatterning tool," J. Microlithogr. Microfabri. and Microsyst. 5, 011012 (2006).
  7. L. Z. Cai and X. L. Yang, "Observation of fractional Fourier transforms of continuously variable orders with a scale invariant input," Opt. Commun. 201, 319-323 (2002). [CrossRef]
  8. L. Z. Cai, X. L. Yang, and Y. R. Wang, "Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams," J. Opt. Soc. Am. A 19, 2238-2244 (2002). [CrossRef]
  9. R. C. Rumpf and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004). [CrossRef]
  10. X. L. Yang and L. Z. Cai, "Wave design of the interference of three noncoplanar beams for microfiber fabrication," Opt. Commun. 208, 293-297 (2002). [CrossRef]
  11. X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, "Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices," Opt. Commun. 218, 325-332 (2003). [CrossRef]
  12. Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, "Photonic crystal with diamondlike structure fabricated by holographic lithography," Appl. Phys. Lett. 87, 061103 (2005). [CrossRef]
  13. A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, "Methods for fabricating arrays of holes using interference lithography," J. Vac. Sci. Technol. B 15, 2439-2443 (1997). [CrossRef]
  14. A. Fernandez and D. W. Phillion, "Effects of phase shifts on four-beam interference patterns," Appl. Opt. 37, 473-478 (1998). [CrossRef]
  15. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002). [CrossRef]
  16. A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," Pure Appl. Opt. 1, L3-L6 (1999). [CrossRef]
  17. M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, "Two-dimensional photonic band structures," Opt. Commun. 80, 199-204 (1991). [CrossRef]
  18. D. Cassagne, C. Jouanin, and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B 53, 7134-7142 (1996). [CrossRef]
  19. C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, "Diffraction element assisted lithography: Pattern control for photonic crystal fabrication," Appl. Phys. Lett. 86, 193110 (2005). [CrossRef]
  20. L. Z. Cai, X. L. Yang, and Y. R. Wang, "Formation of a microfiber bundle by interference of three noncoplanar beams," Opt. Lett. 26, 1858-1860 (2001). [CrossRef]
  21. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, "Fabrication of 200 nm period nanomagnetic arrays using interference lithography and a negative resist," J. Vac. Sci. Technol. B 17, 3182-3189 (1999). [CrossRef]
  22. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Moulding the Flow of Lights (Princeton U. Press, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited