OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 29 — Oct. 10, 2007
  • pp: 7212–7217

Optical interleavers based on two-dimensional photonic crystals

Yaw-Dong Wu, Min-Lin Huang, and Tien-Tsorng Shih  »View Author Affiliations

Applied Optics, Vol. 46, Issue 29, pp. 7212-7217 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2037 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultrasmall device size optical interleaver based on directional coupler waveguides in two-dimensional photonic crystals (PCs) is proposed. The numerical results show that the proposed PCs waveguide structure could really function as an interleaver with the central wavelength 1550   nm and the channel spacing 0.8   nm (frequency spacing of 100   GHz ) of the dense wavelength division multiplexing (DWDM) specification. It can be widely used as the wavelength selective element for multiplexer–demultiplexer to lower or raise channel densities in DWDM optical fiber communication systems.

© 2007 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: March 26, 2007
Revised Manuscript: August 11, 2007
Manuscript Accepted: August 22, 2007
Published: October 5, 2007

Yaw-Dong Wu, Min-Lin Huang, and Tien-Tsorng Shih, "Optical interleavers based on two-dimensional photonic crystals," Appl. Opt. 46, 7212-7217 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. Y. Kim, S. H. Lee, S. S. Lee, and J. S. Lee, "Upgrading WDM networks using ultradense WDM channel groups," IEEE Photon. Technol. Lett. 16, 1966-1968 (2004). [CrossRef]
  2. S. Cao, S. Chen, J. Damask, J. N. Doerr, C. R. Guiziou, L. Harvey, G. Hibino, Y. Li, H. Suzuki, S. Wu, and K.-Y. Xie, P., "Interleaver technology: comparisons and applications requirements," J. Lightwave Technol. 22, 281-289 (2004). [CrossRef]
  3. K. Lee, M. Fok, S. Wan, and C. Shu, "Optically controlled Sagnac loop comb filter," Opt. Express 12, 6335-6340 (2004). [CrossRef] [PubMed]
  4. S. Li, K. S. Chiang, and W. A. Gambling, "Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror," Appl. Phys. Lett. 76, 3676-3678 (2000). [CrossRef]
  5. X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005). [CrossRef]
  6. C. H. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003). [CrossRef]
  7. H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter," Opt. Commun. 169, 159-165 (1999). [CrossRef]
  8. L. Hojoon and G. P. Agrawal, "Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings," IEEE Photon. Technol. Lett. 16, 635-637 (2004). [CrossRef]
  9. W. Li, Q. Guo, and S. Gu, "Interleaver technology review," Proc. SPIE 4906, 73-80 (2002). [CrossRef]
  10. T. Chiba, H. Arai, H. Nounen, and K. Ohira, "Waveguide interleaving filters," Proc. SPIE 5246, 532-538 (2003). [CrossRef]
  11. B. B. Dingel, "Recent developments of novel optical interleavers: performance and potential," Proc. SPIE 5246, 570-581 (2003). [CrossRef]
  12. Y. Sugimoto, H. Nakamura, Y. Tanaka, N. Ikeda, and K. Asakawa, "High-precision optical interference in Mach-Zehnder-type photonic crystal waveguide," Opt. Express 13, 96-105 (2005). [CrossRef] [PubMed]
  13. P. Lalane, "Electromagnetic analysis of photonic crystals waveguides operating above the light cone," IEEE J. Quantum Electron. 38, 800-804 (2002). [CrossRef]
  14. Y. D. Wu, K. W. Hsu, and T. T. Shih, "Thirty-two channels dense wavelength division multiplexer based on cascade two-dimensional photonic crystals waveguide structure," J. Opt. Soc. Am. B 24, 2075-2080 (2007). [CrossRef]
  15. C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, "Analyzing multilayer optical waveguide with all nonlinear layers," Opt. Express 15, 2499-2516 (2007). [CrossRef] [PubMed]
  16. M. Imada, S. Noda, A. Chutina, M. Mochizuki, and T. Tanaka, "Channel drop filter using a single defect in a 2-d photonic crystal slab waveguide," J. Lightwave Technol. 20, 873-878 (2002). [CrossRef]
  17. S. Oliver, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, and U. Oesterle, "Improved 60° bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals," J. Lightwave Technol. 20, 1198-1203 (2002). [CrossRef]
  18. J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230, 387-392 (2004). [CrossRef]
  19. Y. Tanaka, H. Nakamura, Y. Sugimoto, N. Ikeda, K. Asakawa, and K. Inoue, "Coupling properties in a 2-D photonic crystal slab directional coupler with a triangular lattice of air holes," IEEE J. Quantum. Electron. 41, 76-84 (2005). [CrossRef]
  20. M. Tokushima and H. Yamada, "Photonic crystal line defect waveguide directional coupler," Electron. Lett. 37, 1454-1455 (2001). [CrossRef]
  21. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. 19, 1970-1975 (2001). [CrossRef]
  22. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909-918 (2002). [CrossRef]
  23. S. Kuchinsdy, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002). [CrossRef]
  24. S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002). [CrossRef]
  25. Y. J. Quan, P. D. Han, X. D. Lu, Z. C. Ye, and L. Wu, "Optical interleaver based on directional coupler in a 2D photonic crystal slab with triangular lattice of air holes," Opt. Commun. 22, 1-3 (2006).
  26. A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon. Technol. Lett. 15, 694-696 (2003). [CrossRef]
  27. N. Yamamoto, T. Ogawa, and K. Komori, "Photonic crystal directional coupler switch with small switching length and wide bandwidth," Opt. Express 14, 1223-1224 (2006). [CrossRef] [PubMed]
  28. C. C. Chen, C. Y. Chen, W. K. Wang, F. H. Huang, C. K. Lin, W. Y. Chiu, and Y. J. Chan, "Photonic crystal directional couplers formed by InAlGaAs nano-rods," Opt. Express 13, 38-43 (2005). [CrossRef] [PubMed]
  29. H. Andreas and S. D. José, "Inverse designed photonic crystal de-multiplex waveguide coupler," Opt. Express 13, 5440-5449 (2005). [CrossRef]
  30. F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Martí, "All-optical switching structure based on a photonic crystal directional coupler," Opt. Express 12, 161-167 (2004). [CrossRef] [PubMed]
  31. A. Green, E. Istrate, and E. Sargent, "Efficient design and optimization of photonic crystal waveguides and couplers: the interface diffraction method," Opt. Express 13, 7304-7318 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited