OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 29 — Oct. 10, 2007
  • pp: 7317–7328

Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media

Roberto Reif, Ousama A'Amar, and Irving J. Bigio  »View Author Affiliations


Applied Optics, Vol. 46, Issue 29, pp. 7317-7328 (2007)
http://dx.doi.org/10.1364/AO.46.007317


View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monte Carlo simulations and experiments in tissue phantoms were used to empirically develop an analytical model that characterizes the reflectance spectrum in a turbid medium. The model extracts the optical properties (scattering and absorption coefficients) of the medium at small source-detector separations, for which the diffusion approximation is not valid. The accuracy of the model and the inversion algorithm were investigated and validated. Four fiber probe configurations were tested for which both the source and the detector fibers were tilted at a predetermined angle, with the fibers parallel to each other. This parallel-fiber geometry facilitates clinical endoscopic applications and ease of fabrication. Accurate extraction of tissue optical properties from in vivo spectral measurements could have potential applications in detecting, noninvasively and in real time, epithelial (pre)cancers.

© 2007 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 9, 2007
Revised Manuscript: August 4, 2007
Manuscript Accepted: August 22, 2007
Published: October 9, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Roberto Reif, Ousama A'Amar, and Irving J. Bigio, "Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media," Appl. Opt. 46, 7317-7328 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-29-7317


Sort:  Year  |  Journal  |  Reset  

References

  1. I. J. Bigio and J. R. Mourant, "Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy," Phys. Med. Biol. 42, 803-814 (1997). [CrossRef] [PubMed]
  2. O. A'Amar, R. D. Ley, and I. J. Bigio, "Comparison between ultraviolet-visible and near-infrared elastic scattering spectroscopy of chemically induced melanomas in an animal model," J. Biomed. Opt. 9, 1320-1326 (2004). [CrossRef] [PubMed]
  3. I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer chemotherapy, current status of translational research," CancerBiol. Ther. 3, 259-267 (2004). [CrossRef]
  4. T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,"Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  5. A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium," J. Opt. Soc. Am. A 14, 246-254 (1997). [CrossRef]
  6. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1991). [CrossRef]
  7. G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006). [CrossRef] [PubMed]
  8. M. Johns, C. A. Giller, D. C. German, and H. Liu, "Determination of reduced scattering coefficient of biological tissue from a needle-like probe," Opt. Express 13, 4828-4842 (2005). [CrossRef] [PubMed]
  9. F. Bevilacqua and C. Depeursinge, "Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path," J. Opt. Soc. Am. A 16, 2935-2945 (1999). [CrossRef]
  10. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, "In vivo measurement of the optical properties of tissue by use of differential path-length spectroscopy," Opt. Lett. 29, 1087-1089 (2004). [CrossRef] [PubMed]
  11. A. Amelink and H. J. C. M. Sterenborg, "Measurement of the local optical properties of turbid media by differential path-length spectroscopy," Appl. Opt. 43, 3048-3054 (2004). [CrossRef] [PubMed]
  12. T. P. Moffitt and S. A. Prahl, "Sized-fiber reflectometry for measuring local optical properties," IEEE J. Sel. Top. Quantum Electron. 7, 952-958 (2001). [CrossRef]
  13. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999). [CrossRef]
  14. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001). [CrossRef]
  15. C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl. Opt. 43, 4677-4684 (2004). [CrossRef] [PubMed]
  16. Q. Liu and N. Ramanujam, "Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra," Appl. Opt. 45, 4776-4790 (2006). [CrossRef] [PubMed]
  17. G. M. Palmer and N. Ramanujam, "A Monte Carlo based inverse model for calculating tissue optical properties, part I: theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006). [CrossRef] [PubMed]
  18. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "A Monte Carlo based inverse model for calculating tissue optical properties, part II: application to breast cancer diagnosis," Appl. Opt. 45, 1072-1078 (2006). [CrossRef] [PubMed]
  19. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003). [CrossRef] [PubMed]
  20. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,"Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  21. J. Sun, K. Fu, A. Wang, A. W. H. Lin, U. Utzinger, and R. Drezek, "Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements," Appl. Opt. 45, 8152-8162 (2006). [CrossRef] [PubMed]
  22. U. Utzinger and R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003). [CrossRef] [PubMed]
  23. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002). [CrossRef] [PubMed]
  24. C. Xhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003). [CrossRef]
  25. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002). [CrossRef] [PubMed]
  26. A. Wang, J. Bender, U. Utzinger, and R. Drezek, "Depth-sensitive reflectance measurements using obliquely oriented fiber probes," J. Biomed. Opt. 10, 044017 (2005). [CrossRef] [PubMed]
  27. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, "Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms," Appl. Opt. 43, 1308-1319 (2004). [CrossRef] [PubMed]
  28. J. Pfefer, A. Agrawal, and R. Drezek, "Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy," J. Biomed. Opt. 10, 044016 (2005). [CrossRef] [PubMed]
  29. S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry," Appl. Opt. 36, 136-143 (1997). [CrossRef] [PubMed]
  30. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, "Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma," Appl. Opt. 44, 4291-4305 (2005). [CrossRef] [PubMed]
  31. S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissue," in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 73-100.
  32. L. H. Wang, S. L. Jacques, and L. Zheng, "MCML: Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  33. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993). [CrossRef] [PubMed]
  34. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941). [CrossRef]
  35. P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering and phase function properties," J. Biomed. Opt. 8, 495-503 (2003). [CrossRef] [PubMed]
  36. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Germet, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992). [CrossRef] [PubMed]
  37. M. G. Nichols, E. L. Hull, and T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997). [CrossRef] [PubMed]
  38. M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993). [CrossRef]
  39. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  40. A. Sassaroli and S. Fantini, "Comment on the modified Beer-Lambert law for scattering media," Phys. Med. Biol. 49, N255-N257 (2004). [CrossRef] [PubMed]
  41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  42. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, "Influence of the phase function on light transport measurements in turbid media performed with small source-detector separations," Opt. Lett. 21, 546-548 (1996). [CrossRef] [PubMed]
  43. M. Canpolat and J. R. Mourant, "High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue," Phys. Med. Biol. 45, 1127-1140 (2000). [CrossRef] [PubMed]
  44. M. Canpolat and J. R. Mourant, "Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light," Appl. Opt. 40, 3792-3799 (2001). [CrossRef]
  45. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998). [CrossRef]
  46. A. Dunn and D. Boas, "Transport-based image reconstruction in turbid media with small source-detector separations," Opt. Lett. 25, 1777-1779 (2000). [CrossRef]
  47. P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003). [CrossRef] [PubMed]
  48. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited